In this script, we look at the high admixture regions in Wallacea. High admixture is defined as having substantial memberships in many clusters. Usually each grid cell has substantial membership (say > 0.1) in one cluster - but some grid cells may have an admixing of the different communities of bird species and they will show high memberships in multiple clusters.
library(methClust)
library(CountClust)
library(rasterVis)
library(gtools)
library(sp)
library(rgdal)
library(ggplot2)
library(maps)
library(mapdata)
library(mapplots)
library(scales)
library(ggthemes)
Load the data
birds <- get(load("../data/wallacea_birds.rda"))
latlong_chars_birds <- rownames(birds)
latlong <- cbind.data.frame(as.numeric(sapply(latlong_chars_birds,
function(x) return(strsplit(x, "_")[[1]][1]))),
as.numeric(sapply(latlong_chars_birds,
function(x) return(strsplit(x, "_")[[1]][2]))))
topics_clust <- get(load("../output/methClust_wallacea_birds.rda"))
topics <- topics_clust[[8]]
num_components <- apply(topics$omega, 1, function(x) return (length(which(x > 0.1))))
modelmat <- model.matrix(~as.factor(num_components)-1)
color = colorRampPalette(c("white", "red"))(5)
intensity <- 0.8
for(m in 1:1){
png(filename=paste0("../docs/High_ADMIX_regions_birds/high_admixture_K_8.png"),width = 1000, height = 800)
map("worldHires",
ylim=c(-18,20), xlim=c(90,160), # Re-defines the latitude and longitude range
col = "gray", fill=TRUE, mar=c(0.1,0.1,0.1,0.1))
lapply(1:dim(modelmat)[1], function(r)
add.pie(z=as.integer(100*modelmat[r,]),
x=latlong[r,1], y=latlong[r,2], labels=c("","",""),
radius = 0.5,
col=c(alpha(color[1],intensity),alpha(color[2],intensity),
alpha(color[3], intensity), alpha(color[4], intensity),
alpha(color[5], intensity))));
dev.off()
}
topics <- topics_clust[[9]]
num_components <- apply(topics$omega, 1, function(x) return (length(which(x > 0.1))))
modelmat <- model.matrix(~as.factor(num_components)-1)
color = colorRampPalette(c("white", "red"))(5)
intensity <- 0.8
for(m in 1:1){
png(filename=paste0("../docs/High_ADMIX_regions_birds/high_admixture_K_9.png"),width = 1000, height = 800)
map("worldHires",
ylim=c(-18,20), xlim=c(90,160), # Re-defines the latitude and longitude range
col = "gray", fill=TRUE, mar=c(0.1,0.1,0.1,0.1))
lapply(1:dim(modelmat)[1], function(r)
add.pie(z=as.integer(100*modelmat[r,]),
x=latlong[r,1], y=latlong[r,2], labels=c("","",""),
radius = 0.5,
col=c(alpha(color[1],intensity),alpha(color[2],intensity),
alpha(color[3], intensity), alpha(color[4], intensity),
alpha(color[5], intensity))));
dev.off()
}
topics <- topics_clust[[10]]
num_components <- apply(topics$omega, 1, function(x) return (length(which(x > 0.1))))
modelmat <- model.matrix(~as.factor(num_components)-1)
color = colorRampPalette(c("white", "red"))(5)
intensity <- 0.8
for(m in 1:1){
png(filename=paste0("../docs/High_ADMIX_regions_birds/high_admixture_K_10.png"),width = 1000, height = 800)
map("worldHires",
ylim=c(-18,20), xlim=c(90,160), # Re-defines the latitude and longitude range
col = "gray", fill=TRUE, mar=c(0.1,0.1,0.1,0.1))
lapply(1:dim(modelmat)[1], function(r)
add.pie(z=as.integer(100*modelmat[r,]),
x=latlong[r,1], y=latlong[r,2], labels=c("","",""),
radius = 0.5,
col=c(alpha(color[1],intensity),alpha(color[2],intensity),
alpha(color[3], intensity), alpha(color[4], intensity),
alpha(color[5], intensity))));
dev.off()
}
Overall we see that the strips of islnads in the Wallacea region are highly admixed.
sessionInfo()
## R version 3.5.0 (2018-04-23)
## Platform: x86_64-apple-darwin15.6.0 (64-bit)
## Running under: macOS Sierra 10.12.6
##
## Matrix products: default
## BLAS: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRblas.0.dylib
## LAPACK: /Library/Frameworks/R.framework/Versions/3.5/Resources/lib/libRlapack.dylib
##
## locale:
## [1] en_US.UTF-8/en_US.UTF-8/en_US.UTF-8/C/en_US.UTF-8/en_US.UTF-8
##
## attached base packages:
## [1] stats graphics grDevices utils datasets methods base
##
## other attached packages:
## [1] ggthemes_3.5.0 scales_0.5.0 mapplots_1.5
## [4] mapdata_2.3.0 maps_3.3.0 rgdal_1.2-20
## [7] gtools_3.5.0 rasterVis_0.44 latticeExtra_0.6-28
## [10] RColorBrewer_1.1-2 lattice_0.20-35 raster_2.6-7
## [13] sp_1.2-7 CountClust_1.6.1 ggplot2_2.2.1
## [16] methClust_0.1.0
##
## loaded via a namespace (and not attached):
## [1] zoo_1.8-1 modeltools_0.2-21 slam_0.1-43
## [4] reshape2_1.4.3 colorspace_1.3-2 htmltools_0.3.6
## [7] stats4_3.5.0 viridisLite_0.3.0 yaml_2.1.19
## [10] mgcv_1.8-23 rlang_0.2.0 hexbin_1.27.2
## [13] pillar_1.2.2 plyr_1.8.4 stringr_1.3.1
## [16] munsell_0.4.3 gtable_0.2.0 evaluate_0.10.1
## [19] knitr_1.20 permute_0.9-4 flexmix_2.3-14
## [22] parallel_3.5.0 Rcpp_0.12.17 backports_1.1.2
## [25] limma_3.36.1 vegan_2.5-1 maptpx_1.9-5
## [28] picante_1.7 digest_0.6.15 stringi_1.2.2
## [31] cowplot_0.9.2 grid_3.5.0 rprojroot_1.3-2
## [34] tools_3.5.0 magrittr_1.5 lazyeval_0.2.1
## [37] tibble_1.4.2 cluster_2.0.7-1 ape_5.1
## [40] MASS_7.3-49 Matrix_1.2-14 SQUAREM_2017.10-1
## [43] assertthat_0.2.0 rmarkdown_1.9 boot_1.3-20
## [46] nnet_7.3-12 nlme_3.1-137 compiler_3.5.0
This R Markdown site was created with workflowr