Packages

require(graphics)
library(igraph)
library(MASS) 
library(Matrix)
library(corpcor)
library(corrplot)
source("isee_all.R") ## ISEE codes
library(CorShrink)
library(gridExtra)
library(ggplot2)
library(scales)

Banded precision matrix

band.mat <- function(a, p, K=1, permu=c(1:p)){
  ones = rep(1,p)
  Omega0 = a*ones%*%t(ones)
  diag(Omega0) = rep(1,p)
  Omega = 1*band(Omega0,-K,K)
  Sigma = qr.solve(Omega)
  Sigma = Sigma*(abs(Sigma)>1e-4)
  Sigma.half=chol(Sigma)
  Sigma.half = Sigma.half*(abs(Sigma.half)>1e-4)
  Sigma = Sigma[permu,permu]
  Omega = Omega[permu,permu]
  Sigma.half = Sigma.half[permu,permu]
  obj = list(Sigma=Sigma, Omega = Omega, Sigma.half = Sigma.half)
}

make.data <- function(Sigma.half, n, p, seed){
  set.seed(seed)  
  
  X = matrix(rnorm(n*p),n,p)%*%Sigma.half
  return(X)
}

Simulations

p = 100
obj = band.mat(a=0.5, p, K = 1)
Sig.half = obj$Sigma.half
Ome.true = obj$Omega
pcorSigma <- -as.matrix(cov2cor(obj$Omega))
diag(pcorSigma) <- rep(1, dim(pcorSigma)[1])

regfactor = "log"  # or "one", "sqrt"
npermu = 1         # or >= 2
sis.use = 0        # or 1, whether to use SIS for screening
bia.cor = 0        # or 1, whether to apply bias correction for ISEE

Original partial correlation matrix

pcorSigma <- -as.matrix(cov2cor(obj$Omega))
diag(pcorSigma) <- rep(1, dim(pcorSigma)[1])
col2 <- c("blue", "white", "red")
corrplot(pcorSigma, diag = FALSE, col = colorRampPalette(col2)(200), tl.pos = "td", 
         tl.col = "black", tl.cex = 0.8, rect.col = "white", 
         na.label.col = "white", method = "color", type = "upper")

Original correlation matrix

corSigma <- cov2cor(obj$Sigma)
col2 <- c("blue", "white", "red")
corrplot(corSigma, diag = FALSE, col = colorRampPalette(col2)(200), tl.pos = "td", 
         tl.col = "black", tl.cex = 0.8, rect.col = "white", 
         na.label.col = "white", method = "color", type = "upper")

Frobenius norm comparison

n_vec = c(30, 50, 75, 100)
M = 10

frob_empirical = matrix(0, length(n_vec), M)
frob_isee = matrix(0, length(n_vec), M)
frob_isee_X = matrix(0, length(n_vec), M)
frob_pcorshrink_lasso = matrix(0, length(n_vec), M)

for(n in 1:length(n_vec)){
  for(m in 1:M){
  
  X.mat = make.data(Sig.half, n_vec[n], p, seed = m*100)
  pcor1 <- -as.matrix(cov2cor(ginv(cov(X.mat))))
  diag(pcor1) <- 1
  
  obj.n = isee(X.mat, regfactor, npermu, sis.use, bia.cor = 0) 
  pcor2 <- -cov2cor(obj.n$Omega.isee)
  diag(pcor2) <- 1
  
  X_tilde_out <- isee.X(X.mat, bia.cor = 0, reg.fac = 1, permu = 1:ncol(X.mat), 
                      use_slasso = TRUE)
  pcor3 <- -cor(X_tilde_out$X.tilde)
  diag(pcor3) <- 1
  
  pcor4 <- pCorShrinkData(X.mat, reg_type = "glmnet",
                          maxiter = 1000,
                          ash.control = list(mixcompdist = "normal"))

  
  frob_empirical[n,m] <- mean(sqrt((as.matrix(pcor1) - as.matrix(pcorSigma))^2))
  frob_isee[n,m] <- mean(sqrt((as.matrix(pcor2) - as.matrix(pcorSigma))^2))
  frob_isee_X[n,m] <- mean(sqrt((as.matrix(pcor3) - as.matrix(pcorSigma))^2))
  frob_pcorshrink_lasso[n,m] <- mean(sqrt((as.matrix(pcor4) - as.matrix(pcorSigma))^2))
  }
  cat("We are at n=", n_vec[n], "\n")
}
frobs_list <- list("empirical" = frob_empirical,
                   "isee" = frob_isee,
                   "isee_X" = frob_isee_X,
                   "pcorshrink_lasso" = frob_pcorshrink_lasso)
save(frobs_list, file = "frob_dist_n_less_p.rda")
frobs_list <- get(load("frob_dist_n_less_p.rda"))

Comparison of estimated partial correlation matrices

n_vec = c(30, 50, 75, 100)
M = 10

p_list <- list()
for(n in 1:length(n_vec)){
  df <- data.frame("method" = factor(c(rep("empirical", M), rep("isee", M), 
                                     rep("isee_X", M), 
                                     rep("pcorshrink_lasso", M)), 
                              levels = c("empirical", "isee",
                                        "isee_X",
                                        "pcorshrink_lasso")),
                 "distance" = log(c(frobs_list$empirical[n,],
                                    frobs_list$isee[n,],
                                    frobs_list$isee_X[n,],
                                    frobs_list$pcorshrink_lasso[n,])))
p <- ggplot(df, aes(method, distance, color = method)) + ylab("log(distance)")
p_list[[n]] <- p + geom_boxplot() + theme_bw() +
  theme(axis.title.x=element_blank(),
        axis.text.x=element_blank(),
        axis.ticks.x=element_blank()) + ggtitle(paste0("n = ", n_vec[n], " p = ", 100)) +scale_y_continuous(breaks= pretty_breaks())
}
grid.arrange(p_list[[1]], p_list[[2]], p_list[[3]], p_list[[4]], nrow = 2,  ncol=2, as.table=TRUE)