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ABSTRACT

The advent of Markov Chain Monte Carlo and its widespread applications has revolu-

tionized statistical literature since 1990. Despite its tremendous success, it has certain

limitations that have formed the basis of modern day research aimed at improving

upon the existing algorithm in terms of convergence, computational complexity etc.

Random Walk Metropolis Hastings (RWMH) algorithm is the most widely used version

of MCMC in higher dimensions. But, besides having huge computational complexity

for high dimensions, it has been found to have pretty low acceptance rate for even

moderately high dimensions like 10-20, and this becomes almost close to 0 for very

high dimensions. In current times, bulk of the data we encounter, be it in Microarray

analysis, Systems Biology, Machine learning, have huge dimensions - ranging from a few

hundreds to even millions. For such processes, RWMH algorithm will scarcely move and

so the entire purpose of using such techniques in high dimensions will fail completely.

In this article, we have presented a new technique- Additive Transformation based

Markov Chain Monte Carlo (TMCMC)- that works on the abstraction of using a single

variable to update all the co-ordinates of the process instead of separately updating each

co-ordinate as is done in RWMH. This method not only has less time complexity but also

leads to much better acceptance rate especially for higher dimensions. The main goal of

our research has been to establish the stochastic stability and the ergodicity properties of
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TMCMC. In the following chapters, we shall discuss the geometric ergodicity behavior,

optimal scaling ( for i.i.d samples and samples with a special dependence structure) and

finally we shall focus on adaptive versions of this approach. Both from a theoretical

viewpoint and from practical perspective ( through an extensive simulation study), the

performance of TMCMC has been evaluated and compared with that of RWMH. We

shall finally discuss about the ongoing and future works of ours and the strength and

limitations of TMCMC.
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Chapter 1

Introduction

Monte Carlo methods have everyday use in Statistics and other disciplines like Com-

puter Science, Systems Biology and Astronomy in today’s times. This technique of

generating random samples from very high dimensional spaces involving very compli-

cated data likelihoods and posterior distributions has simplified many pressing real life

problems in the recent times. In particular, Bayesian computation, simulation from

complex posterior distribution and asymptotics of Bayesian algorithms have benefited

a lot from this mechanism (see Gelfand and Smith [GS90],Tierney [Tie94], Gilks et

al [GS96]). A very standard approach of simulating from complicated distributions

is to use the Metropolis-Hastings (MH) algorithm [Has70][MRR53]. However, there

are obvious scopes for improving upon this algorithm, pertaining mainly to the choice

of proper proposal distribution and the time-complexity associated with the process.

The computational efficiency is of utmost significance when one is dealing with very

high dimensional datasets. Random Walk Metropolis Hastings (RWMH) algorithm,

proposed by Metropolis et al [MRR53], is the standard procedure for dealing with such

multidimensional datasets. The convergence and optimal scaling of such algorithms have

been extensively studied [RGG97]. However, there are certain glaring problems that one

may encounter while using RWMH. For very high dimensional datasets, convergence to

the target density is pretty slow and one requires too many iterations, a difficulty further

aggravated by the fact that in RWMH, we need to update each co-ordinate at a time

and this may lead to very small acceptance probability if the dimension of the dataset
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is too high. The TMCMC algorithm proposed in [DB11] uses simple deterministic

transformations using a single random variable and a single proposal density chosen

appropriately. Primarily one version, termed as the additive TMCMC method, has

been researched, applied to some real life datasets with satisfactory performance and

its efficiency over the usual RWMH in terms of better acceptance rate has also been

established.

1.1 Basic Concepts and Algorithm

We first briefly describe how additive TMCMC works. We explain it for the bivariate

case – the multivariate extension would analogously follow. Suppose we start at a point

(x1, x2). We generate an ε > 0 from some pre-specified proposal distribution q defined

on R+. Then in additive TMCMC we have the following four possible transitions

(x1, x2)→ (x1 + ε, x2 + ε)

(x1, x2)→ (x1 + ε, x2 + ε)

(x1, x2)→ (x1 + ε, x2 + ε)

(x1, x2)→ (x1 + ε, x2 + ε)

(1.1.1)

This means we are moving along two lines in each transition from the point (x1, x2)

, one parallel to the line y = x and the other parallel to the direction y = −x. Each

of the four transitions described above are indexed as Ik for kth transition, where k

may vary from 1 to 4 in the bivariate case, and in general from 1 to 2d in Rd. We

choose a direction with probability p(Ik) for the Ikth move. In this paper, we have

mainly focused on the case with all p(Ik) equal. As with the standard MCMC case,
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we do attach some probabilities with accepting/rejecting the proposed move such that

the reversibility condition is satisfied thereby guaranteeing convergence. Formally, the

algorithm may be presented as follows.

Crucially, a single ε is used to update all the co-ordinates which would ensure a significant

computational gain over RWMH or any other MCMC related methods. Indeed as we

shall show in Chapter 6, for dimensions of the order of 100-120, we may need to

simulate a huge number of variables from the proposal density in case of RWMH, and

time complexity is immense, while TMCMC on the other hand is much faster and the

chain will also move faster compared to that of RWMH due to higher acceptance rate.

The singleton ε also shows that there is no mixture proposal density corresponding to

TMCMC, implying that TMCMC cannot be derived from RWMH for any standard

choice of proposal density.

It must be stated very clearly at the onset that the way we have defined the moves for

the additive model is just one instance of defining a move, keeping in mind some related

issues like irreducibility and reversibility as we shall soon discuss. But an experimenter

can take complete freedom in defining other move types and they may go on to yield

better results than our approach as well. However, to us, this definition is simple

and has both visual and analytical interpretation and that is why we stick with it.

However, among other possible choices of moves, one particular case - termed Random

Dive Metropolis Hastings- has already been investigated to great detail by Dutta and

Bhattacharya [Dut10]. It uses the four move types starting from (x1, x2) given by

(x1ε, x2ε), (x1ε,
x2
ε

), (x1
ε
, x2ε) and (x1

ε
, x2
ε

). Among other possible moves that may interest

readers would be (x1 + ε, x2ε), (x1 − ε, x2ε), (x1 + ε, x2
ε

) and (x1 − ε, x2ε ) which enforces

additive move along one co-ordinate and multiplicative move along other. One may

improve on these moves by making the moves symmetrical about the co-ordinates -

with probability p, we choose from one of the above move types and with probability
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(1−p), we consider the reverse of these move types with respect to co-ordinates (taking

additive step along second co-ordinate and multiplicative step along 1st co-ordinate).

What we want to highlight here is that the main abstraction behind our methodology

is using a single ε to update all the co-ordinates. Now, we state the main algorithm for

additive TMCMC corresponding to 2 dimensions (Algorithm 1.1.1).

Algorithm 1.1.1 Additive TMCMC on R2

� Input: Initial value x0, and number of iterations N .

� For t = 0, . . . , N − 1

1. Generate ε ∼ q(.) and u ∼ U(0, 1) independently so that

2. If 0 < u < 1
4
, then set

x? = (x1 + ε, x2 + ε) and α(x?, ε) = min

{
1,
π(x?)

π(x)

}

3. If 1
4
< u < 1

2
, then set

x? = (x1 + ε, x2 − ε) and α(x?, ε) = min

{
1,
π(x?)

π(x)

}

4. If 1
2
< u < 3

4
, then set

x? = (x1 − ε, x2 + ε) and α(x?, ε) = min

{
1,
π(x?)

π(x)

}

5. If 3
4
< u < 1, then set

x? = (x1 − ε, x2 − ε) and α(x?, ε) = min

{
1,
π(x?)

π(x)

}
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6. Set xn+1 =

 x? with prob. α(x?, ε)

x with prob. 1− α(x?, ε)


� End for

For higher dimensions, say Rd, we have 2d many moves as each co-ordinate is increased

or decreased by the single ε. So, in such a case, we split the interval [0, 1] into 2d many

equal parts. We order the various move types and if the uniform random variable u falls

in the kth part, then we apply the move type of order k ( k = 1(|)2d).

The algorithm stated here is a much simplified one than the ones (Algorithm 2.1 and

Algorithm 2.2) stated in Dutta and Bhattacharya [Dut10], which presents the general

mechanism irrespective of move types. For instance, we take the move probability for

each of these moves to be same and our concentration lies on additive moves only for

which the Jacobian is 1 and the acceptance rate has a nicer looking expression.

That the reversibility condition holds for this algorithm has been established in [DB11].

Since we are working on a general state space, so the general notions of irreducibility and

aperiodicity of Markov chains do not hold in these spaces. This forces one to introduce

analogous concepts for general state spaces (see Meyn and Tweedie [MT93]). We shall

briefly describe these concepts as they will form the groundwork for much of our studies

related to TMCMC.

1.2 Irreducibility criteria

In case of Markov chains on discrete spaces, there is a well-established notion of irre-

ducibility. However, on general state spaces, such a notion no longer works. This is why

we define ψ irreducibility. A Markov chain is said to be ψ-irreducible if there exists a
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measure ψ such that

ψ(A) > 0 =⇒ ∃n with P n(x,A) > 0 ∀x ∈ χ (1.2.1)

where χ is the state space of the Markov chain ( in our case, it would most often be

Rd for some d). To talk about the convergence of the process, we must ensure that it

is λ-irreducible, where λ is the Lebesgue measure. We also need additional concepts of

aperiodicity and small sets. A set E is said to be small if there exists a n > 0 , δ > 0

and some measure ν such that

P n(x, .) > δν(.) x ∈ E (1.2.2)

A chain is called aperiodic if the gcd of all such n for Eqn 1.2.2 holds is 1. All these

concepts of λ-irreducibility, aperiodicity and small sets are very important for laying the

basic foundations of stability. The following theorem due to Dutta and Bhattacharya

[DB11] establishes these properties for the additive TMCMC chain

Theorem 1 Let π be the target density which is bounded away from 0 on Rd. Also,

let the proposal density q be positive on all compact sets on R+. Then, the every non-

empty bounded set in Rd is small, and this can be used to show that the chain is both

λ-irreducible and also aperiodic.

Proof 1 We prove this result for d=2. For higher values of d, the proof is analogous.

We shall show that for any bounded non-empty set E,

P 2(x,A) > δν(A) x ∈ E A ∈ B(R2) (1.2.3)
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The above result implies that the additive TMCMC method is 2-step small. It has been

shown already that the usual RWMH is 1-step small [RT96]. Since E is bounded, it

can be enclosed by a compact rectangle C with λ(C) > 0, whose sides are parallel to the

{y = x} and {y = −x} directions. Note that in one step starting from x=

x1

x2

, one

can move to only a specific set of points, namely

x1 ± ε

x2 ± ε



Fig. 1.2.1: The basic set up for checking irreducibility has been presented. E is the bounded
set under consideration for ”small” ness property. x is a particular point in E. We enclose E
by a large compact rectangle C with sides parallel to the lines {y = x} and {y = −x}. Let
A be any arbitrary Borel set. A? is the intersection of A with C. The possible directions of
transitions from x have been depicted by bold arrows. It is clear that no transition from x
can enter A?. This shows that TMCMC cannot be 1-step small.

It can be easily seen from Fig 6.4.1, that it may very well happen that in the first step,

for no choice of ε does the particle reach the set A i.e. P (x,A) = 0, and if ν(A) > 0,

then by no means can the 1-step small property hold. So, we must resort to checking
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for 2-step smallness. In two steps, the points that may be traversed from x are of the

for x1 ± ε1 ± ε2

x2 ± ε1 ± ε2


Check that in 2 two steps, varying over ε, any state can be reached from any starting

position. Altogether for a fixed ε = (ε1, ε2), there are 16 moves and we index them as

I1, I2, . . . , I16, where xIk(ε) denotes the movement from x by the path indexed by Ik for

some ε. Let x1
Ik

(ε) be the the intermediate step in the path attained after the first move.

We define

AIk = {ε : xIk(ε) ∈ A? and x1
Ik

(ε) ∈ A?} (1.2.4)

Let p(Ik) be the move probability for the Ik path and let pmin and pmax be the minimum

and the maximum move probabilities. Also define

m = inf
z∈C

π(z) M = sup
z∈C

π(z) h = inf
δ∈C

q(δ) (1.2.5)

The above three quantities are finite and not equal to 0 because of the assumptions stated

in the Theorem. Also, given a starting point x, if we consider any point y in a?, there

is a unique choice of ε = (ε1, ε2) for which we can move from x to y. Using this notion

and the fact that λ is invariant of change of location or the axes, we have for bivariate

data
16∑
k=1

λ(AIk) =
16∑
k=1

λ(x+ AIk) = λ(A?) (1.2.6)

Check that the fact that the sides of the compact rectangle C are parallel to {y = x} and

{y = −x}, in the transition from the starting point x to the end point y belonging to

A?, the intermediate step must also belong to A?. It can be easily checked that
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P 2(x,A) ≥ P 2(x,A?)

≥ p2
min

16∑
k=1

∫
AIk

q(ε1)q(ε2)

(
min

{
pminπ(x1

Ik
(ε))

pmaxπ(x)
, 1

})
.(

min

{
pminπ(xIk(ε))

pmaxπ(x1
Ik

(ε))
, 1

})
dε1dε2

≥ p2
minh

2(min

{
pmin.m

pmaxM
, 1

}
)2

16∑
k=1

λ(AIk) by Eqn 1.2.5

= p2
minh

2(min

{
pmin.m

pmaxM
, 1

}
)2λ(A?) by Eqn 1.2.6

= p2
minh

2(min

{
pmin.m

pmaxM
, 1

}
)2λC(A) (1.2.7)

(1.2.8)

This explains analytically that 2-step smallness is indeed satisfied. In this case λC plays

the role of the measure ν and δ = p2
minh

2(min
{
pmin.m
pmaxM

, 1
}

)2, which is essentially a

positive quantity. This automatically implies that the chain is λC measurable. But note

that given any set A with λ(A) > 0, we can choose C large enough so that λC(A) > 0.

This implies that the chain is λ-irreducible. Aperiodicity follows from the fact that by

similar mechanism one can show that for any k greater than or equal to 2, the chain is

k-step small. Hence gcd of all such n for which Eqn 1.2.2 holds must be 1.

1.3 Concluding remarks

In this introductory section, we described the TMCMC algorithm and discussed the

various interesting properties of this algorithm- the reversibility, λ- irreducibility and

aperiodicity of our chain. For any other definition of move types, one must ensure

these conditions are satisfied as they form they are necessary to ensure convergence of
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the chain. It would be our great pleasure if readers can come up with better move

types that satisfy all the desirable criteria and perform better than our algorithm and

the standard MCMC algorithms. Also, an interesting revelation was the fact that the

minorization condition in Eqn 1.2.7 was satisfied for P 2 the two step kernel or for

any other higher order kernel instead of P , the one step kernel, as in standard RWMH

algorithm. However, given that λ-irreducibility and aperiodicity have been proved for

the TMCMC chain and that the reversibility condition holds imply that our chain indeed

converges to the stationary distribution π.

Now that convergence has been guaranteed, our next focal point will be the rate of

convergence. The most desirable rate would be the geometric or the exponential rate

that would ensure very fast convergence. There is a rich theory on geometric ergodicity

of the RWMH chains for a wide range of distributions ( see Roberts and Tweedie [RT96],

Jarner and Hansen [JH00], Mengersen and Tweedie [MT96]). Even a weaker form of

ergodicity, polynomial ergodicity of RWMH chains has been extensively studied (see

Jarner and Roberts [JR02], Mengersen and Tweedie [MT96]). We shall concentrate

on establishing geometric ergodicity properties for our TMCMC chain and through

simulation experiments, try to compare the rates of decay with that of the RWMH

chain.
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Chapter 2

Geometric ergodicity of TMCMC
chain

2.1 Motivation

The reason for preferring geometric ergodicity is that under this condition, one can

apply Central Limit Theorem to a wide class of functions of the Markov Chain, and

hence, one can also speak about the stability of these ergodic estimates. We first define

what is meant by geometric ergodicity.

Let P be the transition kernel of a ψ-irreducible, aperiodic Markov chain with the

stationary distribution π, then the chain is geometrically ergodic if ∃ a function V ≥ 1

and finite at least at one point, and also constants ρ and M , so that

||P n(x, .)− π(.)||TV ≤M.V (x)ρn ∀n ≥ 1 (2.1.1)

where ||ν||TV denotes the total variation norm.

||ν||TV = sup
g:|g|≤V

ν(g)

A very standard way of checking geometric ergodicity is a result that involves the Foster-

Lyapunov drift criteria. P is said to have a geometric drift to a set E if there is a function
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V ≥ 1, finite for at least one point and constants λ < 1 and b <∞ so that

PV (x) ≤ λ.V (x) + b1E(x) (2.1.2)

where PV (x) =
∫
V (y).P (x, y)dy is basically the expectation of V after one transition

given that one starts at the point x. Theorems 14.0.1 and 15.0.1 in Meyn and Tweedie

[MT93] establish the fact that if P has a geometric drift to a small set E, then under

certain regularity conditions, P is π almost everywhere geometric ergodic and the

converse is also true.

The first result we present is basically adaptation of a result due to (Mengerson and

Tweedie, 1996). We now show a sufficient condition that would ensure that Eqn 2.1.2

holds.

Lemma 1 If ∃ V such that V ≥ 1 and finite on bounded support, such that the following

holds

limsup
|x|→∞

PV (x)

V (x)
< 1 (2.1.3)

PV (x)

V (x)
<∞ ∀x (2.1.4)

Then this V satisfies the geometric drift condition in Eqn 2.1.2 and hence the chain

must be geometric ergodic. Also, if for some V finite , the geometric drift condition is

satisfied, then the above condition must also hold true.

Proof 2 Assume that for some V finite and V ≥ 1, the geometric drift condition in

Eqn 2.1.2 is satisfied. Now, by dividing both sides by V (x), we shall get

PV (x)

V (x)
≤ λ+ b

1E(x)

V (x)

12



Since V is finite then given that V > 1, we have

PV (x)

V (x)
≤ λ+ b <∞

Also if |x| → ∞ then as E is a bounded small set, then 1E(x)→ 0, and hence

limsup
|x|→∞

PV (x)

V (x)
< λ < 1

For the converse, let us fix a value γ < 1. Let R be a particular large value so that if

|x| > R, then

PV (x)

V (x)
< γ |x| > R =⇒ PV (x)γ.V (x) |x| > R

Also E = {x : |x| ≤ R} is a compact set and by Eqn 2.1.4,

PV (x) ≤ PV (x)

V (x)
V (x)

Note here that PV (x)
V (x)

is finite by the hypothesis and the function V is also finite on any

bounded set and E is one such set. This implies that PV (x) is finite.

Take b to be the maximum value (finite) that PV (x) can attain on the set E. and we

know via the proof of irreducibility that such a E is small, then it is easy to see that ∀x

PV (x) ≤ γ.V (x) + b1E(x)

This proves the lemma.

So, in order to check geometric ergodicity, it is enough to prove Eqn 2.1.3 and Eqn 2.1.4

for the given chain. But unfortunately, it is not easy to establish for most distributions.

13



So, we need some additional assumptions. We start by showing that if the ε be

sufficiently small so that εk is negligible for all k > 2, then we can derive simpler

sufficient conditions for geometric ergodicity.

2.2 Sufficient conditions for geometric ergodicity

We restrict ourselves to d = 2, since the results will analogously follow for higher

dimensions as well. We first state a lemma.

We index the transitions as

I1  (x1, x2)→ (x1 + ε, x2 + ε)

I2  (x1, x2)→ (x1 + ε, x2 − ε)

I3  (x1, x2)→ (x1 − ε, x2 + ε)

I4  (x1, x2)→ (x1 − ε, x2 − ε)

(2.2.1)

For each k=1:4,

AIk(x) = {ε : π(xIk(ε)) ≥ π(x)}

RIk(x) = {ε : π(xIk(ε)) < π(x)}

Here, corresponding to each transition Ik, A
Ik(x) and RIk(x) denote the acceptance

region and the potential rejection rejection respectively for that transition at the point

14



x. We choose V function of the form

V (x) =
M

π(x)s
0 < s < 1 (2.2.2)

In this case, we have the freedom to choose M and c. Note that as |x| → ∞, it is

expected that V (x) goes to ∞, as π(x) would decrease to 0. So, there exists a set

{x : |x| > R} over which V is larger than 1. We choose our target density π such that

it is bounded on any bounded support. This would imply that we can always choose M

large enough so that V > 1 even on {x : |x| > R}. This satisfies that V is uniformly

greater than 1. That it is finite would follow if we take a target density that does not

drop to 0 on any bounded region. Then

PV (x)

V (x)
=

1

4

4∑
k=1

[
∫
AIk

q(ε).
V (xIk(ε))

V (x)
dε+

∫
RIk

q(ε){1− π(xIk(ε))

π(x)
}dε

+

∫
RIk

q(ε)
π(xIk(ε))

π(x)
.
V (xIk(ε))

V (x)
dε]

=
1

4

4∑
k=1

[
∫
AIk

q(ε){ π(x)

π(xIk(ε))
}sdε+

∫
RIk

q(ε){1−{π(xIk(ε))

π(x)
}}dε

+

∫
RIk

q(ε){π(xIk(ε))

π(x)
}1−s

dε]

=
1

4

4∑
k=1

[
∫
AIk

q(ε).{ π(x)

π(xIk(ε))
}sdε

+

∫
RIk

q(ε){1−{π(xIk(ε))

π(x)
}+{π(xIk(ε))

π(x)
}1−s}dε]

We consider those distributions that have well-defined probability contours in R2. In

such cases, since the distribution must decay at the tails, so if |x| → ∞, then corre-
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sponding to two transitions I1 and I4, we get with probability going to 1,

π(x1 + ε, x2 + ε) < π(x1, x2)

π(x1 − ε, x2 − ε) > π(x1, x2)

(2.2.3)

Now we state a result from Dutta and Bhattacharya [Dut10].

Lemma 2 For each 1 > λ > 0 and for any fixed s lying strictly between 0 and 1,

λs + λ1−s − λ < 1 (2.2.4)

Also, we make the following assumptions

(A1) limsup
|x|→∞

∫
ε

{
1

π(x1−ε,x2−ε)
π(x1,x2)

Iπ(x1−ε,x2−ε)
π(x1,x2)

>1

}
= limsup

|x|→∞

∫
ε

{
π(x1 + ε, x2 + ε)

π(x1, x2)
Iπ(x1+ε,x2+ε)

π(x1,x2)
<1

}

(A2) limsup
|x|→∞

∫
ε

{
1

π(x1−ε,x2+ε)
π(x1,x2)

Iπ(x1−ε,x2+ε)
π(x1,x2)

>1

}
= limsup

|x|→∞

∫
ε

{
π(x1 + ε, x2 − ε)

π(x1, x2)
Iπ(x1+ε,x2−ε)

π(x1,x2)
<1

}
(2.2.5)

Now armed with these assumptions and results,
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4limsup
|x|→∞

PV (x)
V (x)

= limsup
|x|→∞

[
∫
π(x1+ε,x2+ε)
π(x1,x2)

<1

{
1− π(x1 + ε, x2 + ε)

π(x1, x2)
+

[
π(x1 + ε, x2 + ε)

π(x1, x2)

]1−s
}
q(ε)dε

+

∫
π(x1−ε,x2−ε)
π(x1,x2)

<1

{
1− π(x1 − ε, x2 − ε)

π(x1, x2)
+

[
π(x1 − ε, x2 − ε)

π(x1, x2)

]1−s
}
q(ε)dε

+

∫
π(x1−ε,x2−ε)
π(x1,x2)

>1

{
1

π(x1−ε,x2−ε)
π(x1,x2)

}s

q(ε)dε+

∫
π(x1+ε,x2+ε)
π(x1,x2)

>1

{
1

π(x1+ε,x2+ε)
π(x1,x2)

}s

q(ε)dε

+

∫
π(x1+ε,x2−ε)
π(x1,x2)

<1

{
1− π(x1 + ε, x2 − ε)

π(x1, x2)
+

[
π(x1 + ε, x2 − ε)

π(x1, x2)

]1−s
}
q(ε)dε

+

∫
π(x1−ε,x2+ε)
π(x1,x2)

<1

{
1− π(x1 − ε, x2 + ε)

π(x1, x2)
+

[
π(x1 − ε, x2 + ε)

π(x1, x2)

]1−s
}
q(ε)dε

+

∫
π(x1−ε,x2+ε)
π(x1,x2)

>1

{
1

π(x1−ε,x2+ε)
π(x1,x2)

}s

q(ε)dε

+

∫
π(x1+ε,x2−ε)
π(x1,x2)

>1

{
1

π(x1+ε,x2−ε)
π(x1,x2)

}s

q(ε)dε]
(2.2.6)

Define i.i.d variables b1 and b2 such that bi takes value +1 and −1 with probability 1
2
.

We define Ib1,b2 as follows

Ib1,b2 = limsup
|x|→∞

[
∫
π(x1+b1ε,x2+b2ε)

π(x1,x2)
<1

{
1− π(x1 + b1ε, x2 + b2ε)

π(x1, x2)
+

[
π(x1 + b1ε, x2 + b2ε)

π(x1, x2)

]1−s
}
q(ε)dε

+ limsup
|x|→∞

∫ {
1

π(x1−b1ε,x2−b2ε)
π(x1,x2)

}s

Iπ(x1−b1ε,x2−b2ε)
π(x1,x2)

>1
q(ε)dε

(2.2.7)
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It is easy to see that

4limsup
|x|→∞

PV (x)

V (x)
≤ I+1,+1 + I+1,−1 + I−1,+1 + I−1,−1 (2.2.8)

We abbreviate I+1,+1 as I1 .

I1 = limsup
|x|→∞

[
∫
π(x1+ε,x2+ε)
π(x1,x2)

<1

{
1− π(x1 + ε, x2 + ε)

π(x1, x2)
+

[
π(x1 + ε, x2 + ε)

π(x1, x2)

]1−s
}
q(ε)dε

+

∫
π(x1−ε,x2−ε)
π(x1,x2)

>1

{
1

π(x1−ε,x2−ε)
π(x1,x2)

}s

q(ε)dε]

= limsup
|x|→∞

∫ [{
1− π(x1 + ε, x2 + ε)

π(x1, x2)
+

[
π(x1 + ε, x2 + ε)

π(x1, x2)

]1−s
}
Iπ(x1+ε,x2+ε)

π(x1,x2)
<1

+

{
1

π(x1−ε,x2−ε)
π(x1,x2)

}s

Iπ(x1−ε,x2−ε)
π(x1,x2)

>1

]
q(ε)dε

≤ limsup
|x|→∞

∫ [{
1− π(x1 + ε, x2 + ε)

π(x1, x2)
+

[
π(x1 + ε, x2 + ε)

π(x1, x2)

]1−s
}
Iπ(x1+ε,x2+ε)

π(x1,x2)
<1

]

+ limsup
|x|→∞

∫ {
1

π(x1−ε,x2−ε)
π(x1,x2)

}s

Iπ(x1−ε,x2−ε)
π(x1,x2)

>1
q(ε)dε

(2.2.9)

Note that the integrand in this case is bounded as
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∣∣∣∣∣
{

1− π(x1 + ε, x2 + ε)

π(x1, x2)
+

[
π(x1 + ε, x2 + ε)

π(x1, x2)

]1−s
}
Iπ(x1+ε,x2+ε)

π(x1,x2)
<1

∣∣∣∣∣
+

∣∣∣∣∣
{

1
π(x1−ε,x2−ε)
π(x1,x2)

}s

Iπ(x1−ε,x2−ε)
π(x1,x2)

>1

∣∣∣∣∣
≤

{
1 +

∣∣∣∣π(x1 + ε, x2 + ε)

π(x1, x2)

∣∣∣∣+

∣∣∣∣∣
[
π(x1 + ε, x2 + ε)

π(x1, x2)

]1−s
∣∣∣∣∣
}
Iπ(x1+ε,x2+ε)

π(x1,x2)
<1

+

∣∣∣∣∣
{

1
π(x1−ε,x2−ε)
π(x1,x2)

}s

Iπ(x1−ε,x2−ε)
π(x1,x2)

>1

∣∣∣∣∣
≤ 4

Using Assumption (A1), it can be checked that

I1 ≤ limsup
|x|→∞

∫ [{
1− π(x1 + ε, x2 + ε)

π(x1, x2)
+

[
π(x1 + ε, x2 + ε)

π(x1, x2)

]1−s
}
Iπ(x1+ε,x2+ε)

π(x1,x2)
<1

]

+ limsup
|x|→∞

∫ {
π(x1 + ε, x2 + ε)

π(x1, x2)

}s
Iπ(x1+ε,x2+ε)

π(x1,x2)
<1
q(ε)dε

= limsup
|x|→∞

∫ [{
1− π(x1 + ε, x2 + ε)

π(x1, x2)
+

[
π(x1 + ε, x2 + ε)

π(x1, x2)

]1−s

+

[
π(x1 + ε, x2 + ε)

π(x1, x2)

]s}
Iπ(x1+ε,x2+ε)

π(x1,x2)
<1

]
< 2 limsup

|x|→∞

∫
Iπ(x1+ε,x2+ε)

π(x1,x2)
<1

by Lemma 4.2

(2.2.10)

Using similar approach the assumption (A2), we have
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4 limsup
|x|→∞

PV (x)

V (x)
< 2

[
limsup
|x|→∞

∫
Iπ(x1+ε,x2+ε)

π(x1,x2)
<1

+ limsup
|x|→∞

∫
Iπ(x1−ε,x2−ε)

π(x1,x2)
<1

]

<

∫ {
2 I

limsup
|x|→∞

π(x1+ε,x2+ε)
π(x1,x2)

<1
+ 2 I

limsup
|x|→∞

π(x1−ε,x2−ε)
π(x1,x2)

<1

+ 2 I
limsup
|x|→∞

π(x1−ε,x2+ε)
π(x1,x2)

<1
+ 2 I

limsup
|x|→∞

π(x1+ε,x2−ε)
π(x1,x2)

<1

}

= 2 + 2

∫ {
I
limsup
|x|→∞

π(x1+ε,x2−ε)
π(x1,x2)

<1
+ I

limsup
|x|→∞

π(x1−ε,x2+ε)
π(x1,x2)

<1

}
(2.2.11)

Note that for two sequences an and bn,

limsup (an)− limsup (bn) ≤ limsup (an − bn)

Using this, one can infer from (A1) to (A3) that

{ε : limsup
|x|→∞

π(x1 + ε, x2 + ε)

π(x1, x2)
< 1} = {ε : limsup

|x|→∞

π(x1 − ε, x2 − ε)
π(x1, x2)

< 1}c

{ε : limsup
|x|→∞

π(x1 − ε, x2 + ε)

π(x1, x2)
< 1} = {ε : limsup

|x|→∞

π(x1 + ε, x2 − ε)
π(x1, x2)

< 1}c

And then, we can say that

4limsup
|x|→∞

PV (x)

V (x)
< 2 + 2 = 4 (2.2.12)

This establishes the first sufficient condition stated in Lemma 4.1. The condition that

PV (x)
V (x)

is finite follows from the fact that our choice of V is finite for any 0 < s < 1 given

that that the density function π is bounded.
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An assumption made here is that
{
ε : π(x1−ε,x2+ε)

π(x1,x2)
= 1
}

and{
ε : π(x1+ε,x2−ε)

π(x1,x2)
= 1
}

are measure zero sets. But, check that this assumption can be

relaxed and the same procedure can be carried out even if these sets are not of 0

measure.

Example 1 Consider now the bivariate uniform distribution

π(x, y) ∝ 1

λ(C)
x, y ∈ C C bounded in R2 (2.2.13)

Note that for this distribution, outside the compact set C π = 0 and in such cases,

if transitions occur outside C,(A1)-(A3) will not make much sense. But luckily, our

algorithm and also standard MCMC are so designed that such transitions are always

rejected and one would be restricted to C all the time. Under such a case (A1)-(A3)

trivially hold since all the π values are identical. Also this distribution is uniformly

ergodic in the sense that the rate of convergence in (7) is independent of x.

However, the sufficient conditions derived above fail for the case of Gaussian distribu-

tions, which propels us to search for stronger sufficient conditions that would include

Gaussian distributions, if at all possible. We cite the next theorem that does suffice the

need.

We shall now give a sufficient condition for geometric ergodicity in TMCMC for a broad

class of distributions. This proof follows on the lines of Jarner and Hansen [JH00]

and has been suitably modified for our TMCMC case. First we define the notion of

subexponential densities.

A density π is said to be sub-exponential if it is positive with continuous first derivative
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and satisfies

lim
|x|→∞

n(x).∇logπ(x) = −∞ (2.2.14)

where n(x) denotes the unit vector x
|x| . This would imply that for any K > 0, ∃ R > 0

such that

π(x+ cn(x))

π(x)
≤ e−cK x ≥ R, c ≥ 0 (2.2.15)

This means that π is decaying at a rate better than exponential along any direction.

It is very easy to check that the Gaussian ( univariate as well as multivariate for any

variance covariance matrix ) or the Gamma distributions ( univariate or independent

multivariate) indeed satisfy these conditions.

Theorem 2 If π the target density is sub-exponential and has contours that are nowhere

piecewise parallel to y = −x, then the TMCMC chain satisfies geometric drift if

liminf
|x|→∞

Q(x,A(x)) > 0 (2.2.16)

For this particular scenario, one can check that the function V that satisfies the geomet-

ric drift condition is V (x) = c√
π(x)

corresponding to some c > 0.

Proof 3 Following the notation of [JH00], let Cπ(x) be the contour of the density π that

contains the value π(x). We define the radial cone Cπ(x)(δ) around Cπ(x) to be

Cπ(x)(δ) =
{
y + an(y) : y ∈ Cπ(x),−δ < s < δ

}
(2.2.17)

22



By the hypothesis we can say there exists a ε > 0 such that

limsup
|x|→∞

Q(x,R(x)) ≤ 1− 2ε
1
2 (2.2.18)

Take the belt length δ such that the probability that a move from x, the starting point,

falls within this δ belt is 0. That it is possible can be seen as follows. Note that ∃ a

compact set E such that Q(x,Ec) < ε
2
. So, if we can get a δ so that Q(Cπ(x)(δ)∩E) < ε

2
,

then we are done. Note that of the two outward and inward moves given by (+ε,+ε)

and (−ε,−ε) for any point in the 1st co-ordinate, the probability that such a move

results in a value within Cπ(x)(δ) is proportional to the width δ and thus can be made

sufficiently small. For the other two moves, note that since the contours (∩ E) are

nowhere piecewise parallel to y = −x, then we cut the contour at finitely many points.

Infinitely many points of intersection can be ruled out because of the intersection with E

which is compact. If that was the case, this this infinite collection of interesting points

would have a limit point in E, which is not possible as the points are isolated.

Now, in this situation, ∃ Rε so that any point y outside the δ bound around x,

π(y)

π(x)
< ε |x| > Rε (2.2.19)

This done by taking the shortest line from y to the origin and suppose it ( extended if

needed ) cuts the contour Cπ(x) at z. There will be two such values of z, we choose the

one that is nearest to x. Then by the fact that π(x) is same as π(z) and Eqn 2.2.15,

we get the result in Eqn 2.2.19. This still requires a small argument left. To ensure

that this z indeed satisfies |z| > Rε. Now look at he set E, the effective move set. Join

each point in E to the origin by a straight line and extend it if needed to cut the contour.

We get a segment of contour D(x) bounded and closed that contains x. Now since this
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set is a bounded one, we can always choose x large enough so that all these points have

norm greater than Rε. Armed with these results, we look for dimension d and s = 1
2
,

PV (x)

V (x)
=

1

2d

∑
b1,··· ,bd

∫
A(x)

[
π(x1, x2)

π(x1 + b1ε, x2 + b2ε)

] 1
2

g(ε)dε

+
1

2d

∑
b1,··· ,bd

∫
R(x)

[
1− π(x1 + b1ε, x2 + b2ε)

π(x1, x2)
+

{
π(x1 + b1ε, x2 + b2ε)

π(x1, x2)

} 1
2

]
g(ε)dε

(2.2.20)

Split the integral over R(x) and that over A(x) into parts- within Cπ(x)(δ) and outside

Cπ(x)(δ), and then we get for x such that |x| > Rε and all the bounded region D(x) has

all points with norm greater than Rε,

PV (x)

V (x)
< ε+ ε

1
2Q(x,A(x)) +

(
1 + ε

1
2

)
Q(x,R(x))

= ε+ ε
1
2 +Q(x,R(x))

= 1− ε
1
2 + ε < 1

(2.2.21)

Note that for spherically symmetric sub-exponential distributions ( for example standard

Gaussian), these conditions naturally hold. For instance, the fact that no part of the

contour is parallel to y = −x is quite obvious. To check that liminf
|x|→∞

Q(x,A(x)) > 0, it

is enough to perceive that at any point in the 1st co-ordinate, the inward direction first

stays in the acceptance region and then moves to rejection region after some time. Now,

perceive that the minimum distance to be traversed to reach the acceptance region from

any point in the first co-ordinate through the inward move is proportional to the norm
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value of the point. Now, let Mε be the that value such that the
∫M
−M g(ε)dε > 1− ε. Now

choose x such that |x| > 3Mε ( radius of Cπ(x) is greater than 3Mε), then Q(x,A(x)) >

1−ε
4
> 0. Now take the truncated sequence xn with |xn| → 0 and xn has radius greater

than 3Mε, then along this sequence, the limit of Q(x,A(x)) is greater than 1−ε
4

. Thus

liminf
|x|→∞

Q(x,A(x)) > 0 condition is satisfied.

Note that the constraint that no part of the contour can be piecewise parallel to y = −x

does not really cause too much of a problem because the only common distribution that

satisfies this property is the Laplace distribution and it is not sub-exponential. So, in a

sense we are not losing much over the RWMH algorithm.

Since the minorization condition is satisfied for P 2, from all these derivations, we can

at most say that P 2 is geometrically ergodic. However, since the total variation norm

is a decreasing function of n, we can say

||P n(x, .)− π(.)||TV <
M√
π(x)

ρ2bn
2
c (2.2.22)

which is almost as good as geometric ergodicity.

2.3 Concluding remarks

In this chapter, we made some basic progress as far as convergence of TMCMC is con-

cerned. We derived sufficient conditions for the geometric drift condition and although

not exact, the convergence rate for the TMCMC chain in such cases is almost as good

as geometric ergodicity. However, geometric ergodicity is just a theoretical notion that

has certain desirable properties. It does not tell us how fast or slow the convergence

rate really is. Note that the rate depends heavily on π, the target density and ρ. What

we would like to do is to find out how the parameter ρ varies, what are the guiding
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factor and what could be the optimal value of ρ. We shall start analyzing these issues

next chapter onwards.

for different choices of proposal variances). Corresponding to each time point t, we shall

thus get L many iterates. The notion is that as time t increases (specially after burn-

in), these L many iterates should be close to an independently drawn random sample

from the target distribution π. So, if we look at the KST statistic for the empirical

distribution of these iterates along a particular dimension with respect to the marginal

of π along that dimension, we should find the test statistic decreasing with time and

finally being very close to 0 after a certain time point. burn in.
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Chapter 3

Optimal scaling of TMCMC
algorithm (independent
components)

Having established the geometric ergodicity properties of the TMCMC method, we now

focus on the optimal scaling of the proposal distribution so as to ensure convergence to

stationarity in optimal time. This is particularly essential from an algorithmic point of

view in order to reduce the time complexity of the simulation algorithm. If the variance

of the proposal density is very small, then jumps will be of smaller magnitude and this

would mean the Markov chain would take lot more time to traverse the entire space

and in the process, the convergence rate would be pretty low (see Fig 6.4.2). On the

other hand, if the variance is very large, then our algorithm will reject too many of

the moves. An instance of that is presented in Fig 6.4.1 where we depict the sample

paths of two processes in RWMH and TMCMC processes, one with dimension 5 and

proposal distribution is normal (independently so along each co-ordinate for RWMH)

and variance 10. In another case, we interchanged the dimension and the variance. In

both the cases we found there were lots of rejections and the sample path remained

static for quite some time (especially for RWMH). Also, it can be deduced that there

is an interplay between the proposal variance and the dimension, increase in dimension

and increase in variance both contribute to lower acceptance rates. Therefore, it is most

intuitive that the optimal scaling for both the RWMH and TMCMC chains will depend

on the dimension of the underlying process as well.
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There is an extensive theory on optimal scaling of RWMH chains ( see Beskos, Roberts

and Stuart [BRS09], Bedard [Bed09] [Bed07], Neal and Roberts [NR06], Roberts, Gel-

man and Gilks [RGG97]). The magic number for RWMH has been the optimal ac-

ceptance rate value of 0.234, which has been achieved through maximization of speed

of the process for a wide range of distributions- i.i.d set up and some special class of

independent but non-i.i.d. component set up as well. We have employed an analogous

speed where we have optimized the diffusion speed of our process to get optimal accep-

tance rate. For the sake of readers’ interests, I am splitting this topic into two separate

chapters. In this chapter, we shall concentrate on optimal scaling of i.i.d families and

independent families. In the next chapter, we shall proceed to the more involved general

dependent case scenario.

Note that our moves at each step were symmetric and the magnitude of the jump would

depend on the choice of the proposal density q. Again, q must have its support as R+,

and from now onwards, we shall assume that it is a N(0, 1) distribution truncated at

0. Note that at each step , we sample only one ε from this proposal distribution and

updates all the co-ordinates at one go. The notion of symmetrical transitions at each

step can be expressed from a mathematical point of view as follows. Suppose that we

are simulating from a d dimensional space (usually Rd), and suppose we are at a point

x = (x1, x2, . . . , xd), and we use a single ε updating. Now, in order to analytically

present the transitions, we define d random variables b1, b2, . . . , bd, such that

bi = +1 with probability
1

2

= −1 with probability
1

2
(3.0.1)
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for each i, i = 1, 2, . . . , d. So, we can write the transition from x given ε as

(x1, x2, . . . , xd)→ (x1 + b1ε, x2 + b2ε, . . . , xd + bdε) (3.0.2)

This obviously means that we have to define d+1 many random variables corresponding

to d many random updates ε1, ε2, . . . , εd as in the standard RWMH case, but simulating

bi is far easier an exercise (equivalent to a single toss of a fair coin) than simulating

εi’s, from a computational point of view. We shall show in this paper that from the

viewpoint of optimal convergence also, our algorithm performs way better than the

standard RWMH.

3.1 I.I.D. components case study

Assume that simplest case in which the target density π is a product of iid marginals.

πd(x) =
d∏
i=1

f(xi) (3.1.1)

We assume that f is Lipschitz continuous and satisfies the following conditions

(C1) E

[{
f
′
(X)

f(X)

}8
]

= M1 <∞ (3.1.2)

(C2) E

[{
f
′′
(X)

f(X)

}4
]

= M2 <∞ (3.1.3)

We shall show that for each fixed one-dimensional component of X, the one-dimensional

process converges to a Diffusion process which is analytically tractable and its diffusion

and drift speeds may be numerically evaluated.
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We define Ut
d = Xd

[dt],1, the sped up first component of the actual Markov chain. Note

that this process makes a transition at an interval of 1
d
. As we set d→∞, meaning that

as the dimension of the space blows to ∞, the process essentially becomes a continuous

time Diffusion process.

The following theorem due to Roberts, Gelman and Gilks (1997) [RGG97] establishes

the Diffusion process approximation of the standard RWMH process. In this case the

proposal density variance has been chosen to be proportional to 1
d
. Before stating the

theorem, first let us introduce the notion of Skorohod topology [Sko56]. It is a topology

generated by a class of functions from [0, 1] → R for which Right hand limit and Left

hand limit are well defined at each point (may not be same). It is an important tool

for formulating Poisson process, Levy process and other stochastic point processes. We

consider the metric separable topology J1 on the above class of functions as defined in

[Sko56]. When we speak of convergence of discrete time stochastic processes to diffusion

process in this paper, we imply convergence with respect to this J1 topology.

Theorem 3 Let f be a positive Lipschitz continuous twice differentiable function that

satisfies Eqn 3.1.2 and Eqn 3.1.3, and let us define X0
n = (X1

0,1, X
2
0,2, . . . , ...X

n
0,n) and

X i
0,j = Xj

0,j∀i ≤ j. Then as n → ∞, Un converges to U with respect to the Skorokhod

topology and U satisfies the Langevin Stochastic Differential Equation.

dUt = (h(l))
1
2dBt + h(l)

f
′
(Ut)

2f(Ut)
dt (3.1.4)

where

h(l) = 2l2Φ

(
−l
√
I

2

)
(3.1.5)
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where Φ is the Gaussian cumulative distribution function and I is the information matrix

of f . h(l) is called the speed measure of the diffusion process. It can be shown that h(l)

is maximized for

l̂ =
2.38√
I

(3.1.6)

α(l̂) = 0.23 h(l̂) =
1.3

I
(3.1.7)

We shall formulate an analogous diffusion process for the TMCMC approach and then

either analytically or numerically try to compare the diffusion speeds and the acceptance

rates of the two competing mechanisms.

First, we define the discrete time generator of the TMCMC approach, given by

GdV (x) =
d

2d

∑

bi ∈ {−1,+1}

∀i = 1(|)d



∫ ∞
0

[(
V (x1 + b1ε, . . . , xd + bdε)− V (x1, . . . , xd)

)

×
(
min

{
1,
π(x1 + b1ε, x2 + b2ε, . . . , xd + bdε)

π(x1, x2, . . . , xd)

})]
q(ε)dε

(3.1.8)

Note that this function is measurable with respect to the Skorokhod topology and we

can treat Gn as a continuous time generator that has jumps at the rate d. Given our

restricted focus on a one dimensional component of the actual process, we assume V to

be a function of the 1st co-ordinate only. Under this assumption, the generator defined

in Eqn 3.1.8 is a function of only ε and b1. and can be rephrased as
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GdV (x) =
d

2

∫ ∞
0

∑
b1∈−1,+1

[(
V (x1 + b1ε)− V (x1)

)
×Eb2,b3,...,bd

(
min

{
1,
π(x1 + b1ε, x2 + b2ε, . . . , xd + bdε)

π(x1, x2, . . . , xd)

})]
q(ε)dε

(3.1.9)

where Eb2,b3,...,bd is the expectation taken conditional on b1 and ε. Note that if ε is taken

to be truncated Normal (0, 1), with left truncation at 0, then biε for each i = 1, 2, . . . , d

follows N(0, 1) and since E(bibjε) for i 6= j is also 0, we can say that biε are uncorrelated.

However, biε are not independent because if they were, the pairwise sum would have been

normal. However, since biε+ bjε is equal to 0 with probability 1
2

if i 6= j, the normality

assumption for the sum is contradicted. Also, if we are working on a d dimensional

space, we assume that ε ∼ TNL
0 (0, l

2

d
) where we use the notation TNL

0 means truncated

normal with left truncation at 0.

First we show that the quantity GdV (x) is a bounded quantity.

GdV (x) ≤ dE [V (x+ bε)− V (x)]

= dV
′
(x)E(bε) + d

1

2
V
′′
(x)E(ε2)

≤ l2
d

d− 1
M

(3.1.10)

where M is the maximum value of V
′′
, provided it is bounded. Most of the common

choices of V are bounded and we can talk about its maximum value.

We state Prop 1 that will prove handy.
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Proposition 1 If X ∼ N(µ, σ2), then

E
[
min

{
1, eX

}]
= Φ

(µ
σ

)
+ e{µ+σ2

2
}Φ
(
−σ − µ

σ

)
(3.1.11)

where Φ is the standard Gaussian cdf.

Note that

E

∣∣∣∣
b1ε

[
min

{
1,
π(x1 + b1ε, x2 + b2ε, . . . , xd + bdε)

π(x1, x2, . . . , xd)

}]
= E

∣∣∣∣
b1ε

[
min

{
1, exp

(
log(f(x1 + b1ε))− log(f(x1))

+
d∑
j=2

{
bjε {log(f(xj))}

′
+
ε2

2!
{log(f(xj))}

′′
+
bjε

3

3!
{log(f(zj))}

′′′
})}]
(3.1.12)

Since bj∀j = 2(|)d are iid, as d→∞, one can apply Lyapunov’s Central Limit Theorem

[the Lyapunov condition holds for δ =2] , and we have that

∑d
j=2 bj

[
ε {log(f(xj))}

′
+ ε3 {log(f(zj))}

′′′
]

√∑d
j=2 [ε{log(f(xj))}

′
+ ε3 {log(f(zj))}

′′′
]2

d→ N (0, 1) (3.1.13)

Call

η(x1, b1, ε) = log(f(x1 + b1ε))− log(f(x1)) (3.1.14)

Given this, we can say that as d → ∞, Eqn 3.1.12 reduces to E(min
{

1, eX
}

) where
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X is given as

X ∼ N

(
η(x1, b1, ε) +

ε2

2!

d∑
j=2

{log(f(xj))}
′′
, ε2

d∑
j=2

[
{log(f(xj))}

′
]2

+ ∆

)
(3.1.15)

where

∆ = ε4
d∑
j=2

2 {log(f(xj))}
′
{log(f(zj))}

′′′
+ ε6

d∑
j=2

[
{log(f(zj))}

′′′
]2

(3.1.16)

It can be shown using Slutsky’s theorem that this ∆ term can be neglected as d→∞.

For the sake of technicality, we have to justify that under the convergence in distribution

as in Eqn 3.1.13, the expectation in Eqn 3.1.12 also converges to E(min
{

1, eX
}

). But

this is obvious using the Skorohod representation theorem and using the fact that the

expectation is taken over a function which is bounded and hence uniformly integrable.

Using the fact that

− 1

d− 1

d∑
j=2

{log(f(xj))}
′′

=
1

d− 1

d∑
j=2

[
{log(f(xj))}

′
]2 d→∞−→ I (3.1.17)

where I is the information matrix corresponding to the density f . Also, by definition of

ε, we may assume that (d−1)ε2 is a finite positive quantity. If that is the case, then the

normal parameters in Eqn 3.1.15 can be reformulated (using Slutsky’s theorem) as

X ∼ N

(
η(x1, b1, ε)−

(d− 1)ε2

2
I, (d− 1)ε2I

)
(3.1.18)

Then using Prop 1, we can reduce the expression in Eqn 3.1.12 to the following
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E

∣∣∣∣
b1ε

[
min

{
1,
π(x1 + b1ε, x2 + b2ε, . . . , xd + bdε)

π(x1, x2, . . . , xd)

}]
= Φ

(
η(x1, b1, ε)− (d−1)ε2

2
I√

(d− 1)ε2I

)
+ eη(x1,b1,ε)Φ

(
−
√

(d− 1)ε2I−
η(x1, b1, ε)− (d−1)ε2

2
I√

(d− 1)ε2I

)
= W(b1ε, x1)

(3.1.19)

Note that using Taylor series expansion around x1, we can write Eqn 3.1.14 as

η(x1, b1, ε) = b1ε [logf(x1)]
′
+
ε2

2
[logf(x1)]

′′
+ b1

ε3

3!
[logf(ξ1)]

′′′
(3.1.20)

Also, we can rewrite b1ε as l√
(d−1)

z1, where z1 follows a N(0, 1) distribution and then

we can write η in terms of l and z1 as

η(x1, z1) = b1
lz1√
d

[logf(x1)]
′
+
l2z1

2

2!d
[logf(x1)]

′′
+ b1

l3z1
3

3!d
3
2

[logf(ξ1)]
′′′

(3.1.21)

W(z1, x1, d) = Φ

(
η(x1, z1)− z12l2

2
I

√
z1

2l2I

)
+ eη(x1,z1)Φ

(
− z12l2I

2
− η(x1, z1)
√
z1

2l2I

)
(3.1.22)

The last line follows as the expression η(x1, b1, ε) depends on b1 and ε only through the
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product b1ε. Now we consider the Taylor series expansion around x1 of the term

dEz1

[(
V

(
x1 +

z1l√
d

)
− V (x1)

)
W (z1, x1, d)

]
= dEz1

[{
V
′
(x1)

z1l√
d

+
1

2
V
′′
(x1)

z1
2l2

d
+

1

6
V
′′′

(ξ1)
z1

3l3

d
3
2

}
W (z1, x1, d)

]
(3.1.23)

From Eqn 3.1.22, it is quite clear that W(z1, x1) is continuous but is not differentiable

at the point 0. So, we cannot split it into a Taylor series around 0. Also, note that

W is a bounded function with respect to d. This follows from the fact that Φ is a

bounded function and that η(x1, z1) is a function that goes to 0 as d→∞. We assume

that log(f) is twice continuously differentiable and [log(f)](k) is bounded for k = 1(|)3.

Under this assumption, we can neglect the cubic terms of z1, and hence essentially our

generator reduces to

GdV (x) = V
′
(x1)
√
dlEz1 [z1W (z1, x1, d)] +

1

2
V
′′
(x1)l2Ez1

[
z1

2W (z1, x1, d)
]

(3.1.24)

In evaluating the second integral, we can simplify the expression using Dominated

Convergence Theorem, so that as d→∞,

W(z1, x1, d)→ 2Φ

(
−
√
z1

2l2I
2

)
(3.1.25)

Note that the limiting distribution in that case is independent of x1. But, the first

integral is a cause of concern. In order to manage it, we use an approximation for
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Normal cumulative distribution given by Aludaat and Alodat [AA08].

Φ(x) ≈ 0.5

[
1 +

√
1− e−

√
π
8
x2
]
∀x ≥ 0 (3.1.26)

Note that since the limiting form of W(z1, x1, d) is an even function, hence Ez1 [z1W (z1, x1, d)]

must go to 0 as d → ∞. The fact that the limiting value of
√
dEz1 [z1W (z1, x1, d)] is

finite follows from Eqn 3.1.10 which proves that GdV (x) is bounded.

All integrals can be numerically computed using the approximation in [AA08]. Note that

for standard RWMH, the Diffusion process reduces to the Langevin diffusion where the

limiting form of GdV (x), say L is given by

L = h(l)

[
1

2
V
′′
(x) +

1

2
[logf(x)]

′
V
′
(x)

]
(3.1.27)

The coefficient of V
′′
(x) is called the diffusion speed and it is in this case h(l) given by

Eqn 3.1.5. Note that if a priori, we had not chosen the distribution of z1 to be N(0, 1)

but were flexible in the choice of its distribution, say qZ , such that it has 0 mean and

variance 1, then note that our speed would have been equivalent to the speed of the

standard RWMH if the mass were concentrated only around +1 and −1.

We choose that l that maximizes the quantity 2l2.

∫ {
z1

2Φ

(
−
√
z12l2I
2

)}
qZ(z)dz, and

use it to compute the acceptance rate.

Questions:

� Can the expectations be analytically derived? The second expectation is possible

to derive analytically but the first one is difficult to handle.
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� The analytical value of lmax in our case. Again for the first expectation, difficult

to handle. Since the equation is not Langevin, the concept of speed is a bit blurred.

� Generalization of this method to independent but not identically distributed, and

to dependent families of distributions as well.

3.2 TMCMC within Gibbs for iid product densities

The main notion of Gibbs’ sampling is to update one or multiple components of a mul-

tidimensional stochastic process conditional on the remaining components. In TMCMC

within Gibbs, we update only a fixed proportion cd of the d co-ordinates, where cd is

a function of d and we assume that as d → ∞, then cd → c. In order to explain the

transitions in this process analytically, we define an indicator function Ii for i = 1(|)d.

For fixed d,

χi = 1 if transition in ith co− ordinate

= 0 if no transition in ith co− ordinate

(3.2.1)

P (χi = 1) = cd ∀i = 1(|)d (3.2.2)

Then a feasible transition can be analytically written as

(x1, x2, . . . , xd)→ (x1 + χ1b1ε, x2 + χ2b2ε, . . . , xd + χdbdε) (3.2.3)
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We can write down the generator GdV (x) as follows

GdV (x) =
d

2
P (χ1 = 1)

∫ ∞
0

∑
b1∈−1,+1

[(
V (x1 + b1ε)− V (x1)

)
×E{b2,...,bd,χ2,...,χd}

(
min

{
1,
π(x1 + b1ε, x2 + χ2b2ε, . . . , xd + χdbdε)

π(x1, x2, . . . , xd)

})]
q(ε)dε

(3.2.4)

Note that since V is a function of x1 only, if χ1 is equal to 0, then no transition takes

place and the value of the generator is 0. So, we need to consider only the feasible moves

into account. Since bj and χj always occur as products,

E
b2, b3, . . . , bd

χ2, χ3, . . . , χd


= E{b2χ2,b3χ3,...,bdχd} (3.2.5)

We apply similar form of approach as in Eqn 3.1.12. We have to leave out (1−cd)(d−1)

many terms at each step and we sum over cdd many terms inside the exponential. We

make a very vital assumption that cd → c, which forces cd(d− 1) to go to∞ as d→∞.

We apply Lyapunov’s Central Limit Theorem (again the Lyapunov assumption holds

good for δ=2) as before to obtain

X ∼ N

(
η(x1, b1, ε) +

ε2

2!

cdd∑
j=2

{log(f(xj))}
′′
, ε2

cdd∑
j=2

[
{log(f(xj))}

′
]2

+ ∆

)
(3.2.6)

X ∼ N

(
η(x1, b1, ε)−

cd(d− 1)ε2

2
I, cd(d− 1)ε2I

)
(3.2.7)
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Analogously, we define W(z1, x1, cd, d) as the following

W(z1, x1, cd, d) = Φ

(
η(x1, z1)− z12l2cd

2
I

√
z1

2l2cdI

)
+ eη(x1,z1)Φ

(
− z12l2cdI

2
− η(x1, z1)

√
z1

2l2cdI

)
(3.2.8)

So, finally the limiting form of the generator would also be quite analogous to what we

acquired in the previous section

GdV (x) = V
′
(x1)cd

√
dlEz1 [z1W (z1, x1, cd, d)] +

1

2
cdV

′′
(x1)l2Ez1

[
z1

2W (z1, x1, d)
]

(3.2.9)

W(z1, x1, cd, d)→ 2Φ

(
−
√
z1

2l2cI
2

)
(3.2.10)

Our diffusion speed is then 2cl2.

∫ {
z1

2Φ

(
−
√
z12l2cI

2

)}
qZ(z)dz. This is corresponding

to the diffusion speed hc(l) = 2ci2Φ
(
−
√
l2cI
2

)
for the standard RWMH within Gibbs

approach as given by Roberts and Neal [NR06].

3.3 Diffusion approximation for independent but not

iid random variables

So far we considered only those target densities π which comprises of iid components.

Now, we extend our investigation to those target densities that comprise of independnet

but not identically distributed random variables. So,

πd(x) =
d∏
i=1

fi(xi) (3.3.1)

40



We concentrate on a particular form of the target density involving some scaling constant

parameters, as considered in [Bed08][BR08].

π(xd) =
d∏
j=1

θj(d)f(θj(d)xj) (3.3.2)

We assume the Lipschitz continuity and C3 properties of f together with Eqn 3.1.2

and Eqn 3.1.3. We define Θ(d) = {θ1(d), θ2(d), . . . , θd(d)} and we shall focus on the

case where d→∞. Some of the scaling terms are allowed to appear multiple times. We

assume that the first k terms of the parameter vector may or may not be identical, but

the remaining d− k terms can be split into m subgroups of independent scaling terms.

So,

Θ(d) =

θ1(d), θ2(d), . . . , θk(d), θk+1(d), . . . , θk+m(d),

θk+1(d), . . . , θk+1(d)︸ ︷︷ ︸
c(1,d)−1

, θk+2(d), . . . , θk+2(d)︸ ︷︷ ︸
c(2,d)−1

, . . . , θk+m(d), . . . , θk+m(d)︸ ︷︷ ︸
c(m,d)−1

,


(3.3.3)

where c(1, d), c(2, d), . . . , c(m, d) are the number of occurrences of the parameters in

each of the m distinct classes. We assume that for any i, lim
d→∞

c(i, d) = ∞. Also, we

assume a particular form of each scaling parameter θi(d).

1

{θi(d)}2
=
Ki

dλi
∀i = 1, 2, . . . , k

1

{θi(d)}2
=
Ki

dγi
∀i = k+1, 2, . . . , k+m

Assume that the θi
−2(d) be so arranged that γi are in a decreasing sequence for i = 1(|)m

and also λi form a decreasing sequence from j = 1(|)k. According to [Bed07], the optimal

form of the scaling variance σ2(d) would be of the form σ2(d) = l2

dα
, where l2 is some
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constant and α satisfies

lim
d→∞

dλ1

dα
<∞ lim

d→∞

dγic(i, d)

dα
<∞ ∀i = 1, 2, . . . ,m (3.3.4)

Let Zt be the process at time t sped up by a factor of dα, that means Zt = (X1(dαt), X2(dαt),

. . . , Xd(d
αt)). So, the generator function of the process can be written as

GdV (x) =
dα

2

∫ ∞
0

∑
b1∈−1,+1

[(
V (x1 + b1ε)− V (x1)

)
×Eb2,b3,...,bd

(
min

{
1,
π(x1 + b1ε, x2 + b2ε, . . . , xd + bdε)

π(x1, x2, . . . , xd)

})]
q(ε)dε

(3.3.5)

Once again, we look at the term min
{

1, π(x1+b1ε,x2+b2ε,...,xd+bdε)
π(x1,x2,...,xd)

}
and to write it as

min1, eX where X ∼ N(0, 1). Assume θ1(d) = 1.

E

∣∣∣∣
b1ε

[
min

{
1,
π(x1 + b1ε, x2 + b2ε, . . . , xd + bdε)

π(x1, x2, . . . , xd)

}]
= E

∣∣∣∣
b1ε

[
min

{
1, exp

(
log(f(x1 + b1ε))− log(f(x1))

+
k∑
j=2

{
bjε {log(f(θj(d)xj))}

′
+
ε2

2!
{log(f(θj(d)xj))}

′′
+
bjε

3

3!
{log(f(θj(d)zj))}

′′′
}

+
d∑

j=k+1

{
bjε {log(f(θj(d)xj))}

′
+
ε2

2!
{log(f(θj(d)xj))}

′′
+
bjε

3

3!
{log(f(θj(d)zj))}

′′′
})}]
(3.3.6)

Note that since ε can be written as lz1

d
α
2

where we assume that α > 0, hence, since k is
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finite, the first sum in the expression in Eqn 3.3.6 goes in probability to 0 because .

Then, we apply Lyapunov CLT on bj for j = k + 1, . . . , d, which comprises infinitely

many random variables as d → ∞ and finally applying Slutsky’s theorem which states

that

Zn
d→ Z Yn

P→ 0 Zn + Yn
d→ Z

we get

X ∼ N

(
η(x1, b1, ε) +

ε2

2!

d∑
j=k+1

{log(f(θj(d)xj))}
′′
, ε2

d∑
j=2

[
{log(f(θj(d)xj))}

′
]2

+ ∆

)
(3.3.7)

where

∆ = ε4
d∑
j=2

2 {log(f(θj(d)xj))}
′
{log(f(θj(d)zj))}

′′′
+ ε6

d∑
j=2

[
{log(f(θj(d)zj))}

′′′
]2

(3.3.8)

As d→∞, then

ε2
d∑
j=2

[
{log(f(θj(d)xj))}

′
]2

→
m∑
i=1

l2z1
2dγi

Kidα
E

[{
f
′
(Y )

f(Y )

}2
]

= l2z1
2ξ2I (3.3.9)

We then follow a similar approach as in the previous two cases to obtain

GdV (x) = V
′
(x1)d

α
2 lEz1 [z1W (z1, x1, d, ξ)]+

1

2
V
′′
(x1)l2Ez1

[
z1

2W (z1, x1, d, ξ)
]

(3.3.10)
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where

W (z1, x1, d, ξ) == Φ

(
η(x1, z1)− z12l2ξ2

2
I√

z1
2l2ξ2I

)
+ eη(x1,z1)Φ

(
− z12l2ξ2I

2
− η(x1, z1)√

z1
2l2ξ2I

)
(3.3.11)

By an argument similar to Eqn 3.1.10, we can claim that GdV (x) is bounded under

this set up as well and that forces d
α
2 lEz1 [z1W (z1, x1, d, ξ)] to be a bounded function.

The diffusion speed can be calculated analogously as

hB(l) = 2l2.

∫ {
z1

2Φ

(
−
√
z1

2l2ξ2I
2

)}
qZ(z)dz

3.4 Observations and Concluding remarks

So far we have theoretically derived the diffusion process approximation of our TMCMC

approach and also found the diffusion speed guiding the process in each case. Note that

standard RWMH had resulted in Langevin diffusion equation for the iid, independent

components with appropriate scaling ( see Roberts, Gelman and Gilks [RGG97], M.

Bedard [Bed08]). As a result the concept of speed of the Langevin SDE under standard

approach was pretty clear. Note that in TMCMC however, the notion of speed is not

very clear as the diffusion equation has varying drift and diffusion speeds unlike in the

case of RWMH. One may call the coefficient of V
′′

to be the diffusion speed of the

process. But, still one cannot compare in terms of speed between the two approaches.

However, there is one common ground on which comparisons can be done and that is in

terms of the expected acceptance rate given by Ey

[
min

{
1, π(y)

π(x)

}]
where y varies over

all proposed moves from x. We know that for all the standard RWMH scenarios, the

acceptance rate has been found to be 0.234. We shall see how much better or worse does

our method perform compared to the standard RWMH in terms of expected acceptance
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rate.

First, we considered the iid set up where the diffusion speed corresponding to our

approach is given by

hI(l) = 2l2.

∫ {
z1

2Φ

(
−
√
z1

2l2I
2

)}
qZ(z)dz (3.4.1)

and it is easily checked that the expected acceptance ratio, as defined by us, in this case

is

ARTMCMC = 2.

∫ {
Φ

(
−
√
z1

2l2I
2

)}
qZ(z)dz (3.4.2)

Note from Thm 3 that the optimum value of l in RWMH is 2.38√
I and corresponding

expected acceptance rate is 0.23. However, TMCMC it was observed on maximizing

Eqn 3.4.1 that the optimal value of l is 2.42√
I and the corresponding expected acceptance

rate is 0.438, which is a huge improvement on the standard RWMH process.

We shall have the same acceptance rate for TMCMC within GIbbs and its standard

counterpart as well because in that case we can just define Ic = cI and notice that we

shall have the optimal l value in RWMH and TMCMC to be 2.38√
Ic

and 2.42√
Ic

respectively

and the resulting acceptance rates would remain the same. The same is true for the

target density with properly scaled independent components considered in Section 3

where instead of c in previous argument, we consider ξ2.

We present the plot of the diffusion speed with respect to scaling factor l for i.i.d. set

up Fig 6.4.3, and the that corresponding to the TMCMC within Gibbs approach for

various parameters in Fig 6.4.4, Fig 6.4.5 and Fig 6.4.6.
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This chapter shows that for a wide range of distributions (i.i.d and independent compo-

nents with different scalings) indeed TMCMC is better than RWMH as far as acceptance

rate goes. Later on, in Chapter 6, we shall present some simulation experiments

with optimal scalings and compare the practical acceptance rates and investigate the

convergence with respect to some performance evaluation measures. Now, we shall over

to a more general class of distributions where we relax independence and impose a

weaker dependence criterion instead. We shall then compare the optimal acceptance

rates of TMCMC and RWMH for that class of distributions.
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Chapter 4

Optimal scaling of TMCMC
algorithm (dependent components)

So far, we assumed that the target density π is associated with either iid or mutually

independent random variables, with a special structure. Now, we extend our notion to a

much wider class of distributions where there is a particular form of dependence structure

between the components of the distribution. In determining these non product measures,

we adopted the framework of [MPS11], [BRS09], [BS08], [Bed09]. In particular, we

assume that π0 is a Gaussian measure with mean 0 and covariance Σ and the Radon

Nikodym derivative of the target density π with respect to π0 is given by

dπ

dπ0

= MΨ exp(−Ψ(x)), (4.0.1)

for a real π0-measurable function Ψ on R∞, and MΨ is a normalizing constant. Since Σ

is assumed to be positive definite, we can always find eigenvalues λj
2 and orthonormal

eigenvectors φj such that

Σφj = λj
2φj; j = 1, 2, . . . . (4.0.2)

Any vector x in R∞ can be uniquely represented as

x =
∞∑
j=1

xjφj, where xj = 〈x, φj〉 (4.0.3)
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4.1 TMCMC diffusion approximation for Gaussian

dominated dependent family

Following [MPS11] we approximate the inifinite-dimensional measure using a finite

dimensional target measure πd involving only the first d co-ordinates of x. As N →∞,

πd would eventually converge to π almost everywhere. We define

Ψd(x) = Ψ(P dx), and
dπ

dπ0

∝ exp(−Ψd(x)). (4.1.1)

As in [MPS11], we represent πd(x) as

πd(x) = MΨd exp

(
−Ψd(x)− 1

2
〈x, (Σd)−1x〉

)
(4.1.2)

where Σd = P dΣP d . Under the TMCMC model set up, the move at the (k+1)-th time

point can be explicitly stated in terms of the position at kth time point as follows

xk+1 = γk+1yk+1 +
(
1− γk+1

)
xk, (4.1.3)

where

γk+1 ∼ Bernoulli

(
min

{
1,
π(yk+1)

π(xk)

})
.

We define the move yk+1 as

yk+1 = xk +

√
2`2

d
Σ

1
2 ξk+1, (4.1.4)

where ξk+1 =
(
b1
k+1εk+1, . . . , bd

k+1εk+1
)

where bi = ±1 with probability 1/2 each,

and ε ∼ N(0, 1)I{ε>0}. From (4.1.2) it follows that min
{

1, π(yk+1)
π(xk)

}
can be written
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as min
{

1, eQ
}

where Q is given by

Q =
1

2

∥∥∥Σ−
1
2

(
P dxk

)∥∥∥2

− 1

2

∥∥∥Σ−
1
2

(
P dyk+1

)∥∥∥2

+ Ψd(xk)−Ψd(yk+1). (4.1.5)

Using (4.1.4), one obtains

Q = −
√

2`2

d
〈η, ξ〉 − `2

d
‖ξ‖2 − r(x, ξ), (4.1.6)

where

η = Σ−
1
2 (P dxk) + Σ

1
2∇Ψd(xk), (4.1.7)

and

r(x, ξ) = Ψd(yk+1)−Ψd(xk)− 〈∇Ψd(xk), P dyk+1 − P dxk〉. (4.1.8)

We further define

R(x, ξ) = −
√

2`2

d

d∑
j=1

ηjξj −
`2

d

d∑
j=1

ξj
2, (4.1.9)

and

Ri(x, ξ) = −
√

2`2

d

d∑
j=1,j 6=i

ηjξj −
`2

d

d∑
j=1,j 6=i

ξj
2 (4.1.10)

Using Lemma 5.5 of [MPS11], for large d one can show that

Q = R(x, ξ)− r(x, ξ) ≈ Ri(x, ξ)−
√

2`2

d
ηiξi. (4.1.11)

Using (4.1.9) and (4.1.11) it can be seen that Q is approximately equal to R(x, ξ) as d
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goes to ∞, where R(x, ξ) in our case is given by

R(x, ξ) = −ε
√

2`2

d

d∑
j=1

ηjbj − `2ε2. (4.1.12)

To apply Lyapunov’s central limit theorem we need to show the following: with proba-

bility 1 with respect to π,

∑d
j=1 E

(
bjηj√
d

)4

(√∑d
j=1

η2j
d

)4 =

∑d
j=1

η4j
d2(

‖η‖2
d

)2 → 0, as d→∞. (4.1.13)

By Lemma 5.2 of [MPS11], ‖η‖
2

d
→ 1 π-almost surely as d → ∞. This implies that

the denominator of the left hand side of (4.1.13) goes to 1 π-almost surely, as d →

∞. Now,
(
‖η‖2
d

)2

=
∑d

j=1

η4j
d2

+
∑d

i=1
η2i
d

(∑
j 6=i

η2j
d

)
. Except on a π-null set N , where∑d

j=1

η2j
d

need not converge to 1, we have, for given ε > 0 and d0 depending upon ε,

1 − ε <
∑
j 6=i

η2j
d
< 1 + ε and 1 − ε <

∑d
i=1

η2i
d
< 1 + ε, for d ≥ d0. Hence, for d ≥ d0,

−ε2 − 2ε < ε2 − 2ε = (1 − ε)2 − 1 <
∑d

i=1
η2i
d

(∑
j 6=i

η2j
d

)
− 1 < (1 + ε)2 − 1 = ε2 + 2ε,

so that

∣∣∣∣∣∑d
i=1

η2i
d

(∑
j 6=i

η2j
d

)
− 1

∣∣∣∣∣ < ε2 + 2ε, showing that
∑d

i=1
η2i
d

(∑
j 6=i

η2j
d

)
→ 1 on N c,

the complement of N . Since on N c,
(
‖η‖2
d

)2

→ 1, we must have
∑d

j=1

η4j
d2
→ 0 on N c,

showing that Lyapunov’s condition (4.1.13) holds almost surely with respect to π.

Using Lyapunov’s central limit theorem on bj, and using the result that ‖η‖
2

d
→ 1 π-

almost surely as d→∞, we obtain, for sufficiently large d,

R(x, ξ) ≈ Z ≈ N(−`2ε2, 2`2ε2). (4.1.14)
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Now, (4.1.9) and the fact that for large d, Q ≈ R(x, ξ), imply

Q ≈ −ε
√

2`2

d

(
ηibi +

d∑
j=1,j 6=i

ηjbj

)
− `2ε2, (4.1.15)

so that

[Q|bi, ε] ≈ N

(
−`2ε2 − ε

√
2`2

d
ηibi, 2`

2ε2

)
(4.1.16)

4.1.1 Expected drift

In order to obtain the diffusion approximation, we first obtain the expected drift con-

ditions. In order to do that, we first define Fk to be the sigma algebra generated by

{xn, ξn, γk, n ≤ k}, and denote the conditional expectations E(·|Fk) by Ek(·). We then

note that under stationarity, Ek
(
xk+1 − xk

)
= E0 (x1 − x0), and using (4.1.3) we can

write

dE0

(
xi

1 − xi0
)

= dE0

[
γ1
(
yi

1 − xi1
)]

= dE0

[
α(x, ξ)

√
2`2

d

(
Σ

1
2 ξ
)
i

]
=

1

ηi
λi
√

2`2dE0

[
min

{
1, eQ

}
ξi
]
ηi,

(4.1.17)
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where α(x, ξ) = min
{

1, π(yi
1)

π(xi1)

}
. The last step follows from (4.0.2); noting that λiΣ

− 1
2φi =

φi, (4.1.7) yields

λiηi = λi

〈
Σ−

1
2 (P dx0) + Σ−

1
2∇Ψd(x0), φi

〉
=

〈
P dx0 +∇Ψd(x0), φi

〉
=

(
P dx0 +∇Ψd(x0)

)
i
.

(4.1.18)

Thus, we can write

dE0

(
xi

1 − xi0
)

=
1

ηi

(
P dx0 +∇Ψd(x0)

)
i

√
2`2dE0

[
min

{
1, eQ

}
ξi
]
.

(4.1.19)

Now, writing µ = −`2ε2 − ε
√

2`2

d
ηibi, σ =

√
2`ε, and using (4.1.16), it follows that

√
dE0

[
min

{
1, eQ

}
ξi
]
=
√
dEbiε

[
biεE0

{
min

{
1, eQ

} ∣∣∣∣bi, ε}]
≈
√
dEbiε

[
biε
{

Φ
(µ
σ

)
+ eµ+σ2

2 Φ
(
−σ − µ

σ

)}]
=
√
dEbiε

[
biε

{
Φ

(
− `ε√

2
− ηibi√

d

)
+e−ε

√
2`2

d
ηibiΦ

(
− `ε√

2
+
ηibi√
d

)}]
.

(4.1.20)
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Using the following Taylor’s series expansions

Φ

(
− `ε√

2
− ηibi√

d

)
= Φ

(
− `ε√

2

)
− ηibi√

d
φ

(
− `ε√

2

)
+
η2
i

d
φ′(w1),

Φ

(
− `ε√

2
+
ηibi√
d

)
= Φ

(
− `ε√

2

)
+
ηibi√
d
φ

(
− `ε√

2

)
+
η2
i

d
φ′(w2),

e−ε
√

2`2

d
ηibi = 1− ε

√
2`2

d
ηibi +

2`2ε2η2
i

d
e−w3 , (4.1.21)

where w1 lies between − `ε√
2

and − `ε√
2
− ηibi√

d
; w2 lies between − `ε√

2
and − `ε√

2
+ ηibi√

d
, and w3

lies between 0 and ε
√

2`2

d
ηibi, and noting that Ebiε

[
Φ
(
− `ε√

2

)]
= Ebiε

[
biφ
(
− `ε√

2

)]
= 0,

1√
d
Ebiε

[
εφ
(
− `ε√

2

)]
→ 0 as d→∞, (4.1.20) can be easily seen to be of the form

√
dE0

[
min

{
1, eQ

}
ξi
]
≈
√
dEbiε

[
biε

{
Φ

(
− `ε√

2
− ηibi√

d

)
+e−ε

√
2`2

d
ηibiΦ

(
− `ε√

2
+
ηibi√
d

)}]
≈ −

√
2`2ηi × 2

∫ ∞
0

u2Φ

(
− `u√

2

)
φ(u)du

= −
√
`2

2
ηiβ, (4.1.22)

where

β = 4

∫ ∞
0

u2Φ

(
− `u√

2

)
φ(u)du. (4.1.23)

Hence, we can re-write (4.1.19) as

dE0

(
xi

1 − xi0
)

=
1

ηi

(
P dx0 +∇Ψd(x0)

)
i

√
2`2dE0

[
min

{
1, eQ

}
ξi
]

= −`2β
(
P dx0 +∇Ψd(x0)

)
i
. (4.1.24)
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4.1.2 Expected diffusion coefficient

Now we evaluate the expected diffusion coefficients involving the cross product terms.

For 1 ≤ i 6= j ≤ d, we have

dE0

[(
xi

1 − xi0
) (
xj

1 − xj0
)]

= dE0

[{
γ1
(
yi

1 − xi0
)} {

γ1
(
yj

1 − xj0
)}]

Check that if i 6= j, then the above expectation is 0 using the fact that bibjε has 0 mean

for i 6= j. However for i = j, using (4.1.18) again, we can reduce the above expectation

to

dE0

[(
xi

1 − xi0
) (
xj

1 − xj0
)]

= dE0

[(
xi

1 − xi0
)2
]

= dE0

[
α(x0, ξ)

(
yi

1 − xi0
)2
]

= 2`2λi
2E0

[
ξi

2 min
{

1, eQ
}]
.

(4.1.25)

Using the same Taylor’s series expansions (4.1.21) it is easily seen that

E0

[
ξi

2 min
{

1, eQ
}]
≈ 4

∫ ∞
0

u2Φ

(
− `u√

2

)
φ(u)du

= β. (4.1.26)
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Hence,

dE0

[(
xi

1 − xi0
) (
xj

1 − xj0
)]

= 2`2λi
2E0

[
ξi

2 min
{

1, eQ
}]

≈ 2`2λi
2β

= 2`2β〈φi,Σφi〉.

(4.1.27)

It follows that

dE0

[(
x1 − x0

)
⊗
(
x1 − x0

)]
≈ 2`2βΣd. (4.1.28)

Now defining the piecewise constant interpolant of xk given by

zd(t) = xk; t ∈ [tk, tk+1], (4.1.29)

where tk = k/d, it can be shown, proceeding in the same way, and using the same

assumptions on the covariance operator and Ψ as [MPS11], that zd(t) converges weakly

to z (see [MPS11] for the rigorous definition), where z satisfies the following stochastic

differential equation:

dz

dt
= −g(`) (z + Σ∇Ψ(z)) +

√
2g(`)

dW

dt
, z(0) = z0, (4.1.30)

where z0 ∼ π, W is a Brownian motion in a relevant Hilbert space with covariance

operator Σ, and

g(`) = `2β, (4.1.31)

is the diffusion speed. If `opt maximizes the diffusion speed, then the optimal acceptance
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rate is given by

αopt = 4

∫ ∞
0

Φ

(
−`optu√

2

)
φ(u)du. (4.1.32)

4.2 TMCMC within Gibbs for this dependent fam-

ily of distributions

As before, here we define transitions of the form (??), where the random variable

χi indicates whether or not the i-th co-ordinate of x will be updated. The proof

again required only minor modification to the above proof provided in the case of this

dependent family of distributions. Here we only need to take expectations with respect

to χi; i = 1, . . . , d, so that we now have

[Q|bi, ε] ≈ N

(
−`2ε2 − cε

√
2`2

d
ηibi, 2`

2ε2c2

)
.

Proceeding in the same manner as in the above proof, we obtain a stochastic differential

equation of the same form as (4.1.30), but with g(`) replaced with

gc(`) = c`2βc, (4.2.1)

where

βc = 4

∫ ∞
0

u2Φ

(
− `u

c
√

2

)
φ(u)du.

The optimal acceptance rate is given by

αopt = 4

∫ ∞
0

Φ

(
−`optu
c
√

2

)
φ(u)du, (4.2.2)

where `opt maximizes gc(`).
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4.3 Observations and Concluding remarks

The optimal acceptance rate for similar distributions corresponding to standard RWMH

and its resultant Langevin diffusion has been found to be around 0.234 ( see Mattingly,

Pillai and Stuart [MPS11]). While speeds cannot be compared, acceptance rates can

be. In the dependent case, the diffusion speed is and the optimal acceptance rate

are of the forms (4.1.31) and (4.1.32), respectively. As usual, the TMCMC-based

optimal acceptance rate turns out to be 0.439. The corresponding RWM-based optimal

acceptance rate, having the form 2Φ
(
− `opt√

2

)
, turn out to be 0.234 as before, where

`opt maximizes the corresponding diffusion speed 2`2Φ
(
− √̀

2

)
. Similar information as

before are provided by Figure 6.4.7.

Within Gibbs comparison in the dependent set-up

In the dependent case, it is easily shown that the RWM-based diffusion speed and the

acceptance rate are, respectively, 2c`2Φ
(
− `
c
√

2

)
, and 2Φ

(
− `opt
c
√

2

)
. The corresponding

TMCMC-based quantities are (4.2.1) and (4.2.2), respectively. The optimal acceptance

rates remain 0.234 and 0.439 for TMCMC and RWM, respectively. Figure 6.4.8, com-

paring the diffusion speeds of TMCMC within Gibbs and RWM within Gibbs in the

dependent set-up, lead to similar observations as before.
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Chapter 5

Adaptive versions of TMCMC

Some highly desirable properties of the non-adaptive TMCMC mechanism like geometric

ergodicity, optimal scaling have been studied and the relative advantage of this method

over MCMC has been established in Chapter 2, Chapter 3 and Chapter 4. This

paper is a follow up study of the adaptive versions of the TMCMC mechanism and

the comparative analysis of its performance with respect to adaptive MCMC methods.

First, we discuss the ergodicity properties of adaptations on the TMCMC chain where

we present the arguments and theoretical background for adaptive MCMC based on

coupling as suggested in Roberts and Rosenthal [RR07] and its natural extension to the

TMCMC case as well. Next, we present some examples of adaptive TMCMC, which are

primarily derived from MCMC adaptations as proposed in Haario et al [HT01], Haario

et al [HHT05], Roberts et al [RR09].

5.1 Preliminaries

Let π be the target density from which we intend to simulate a random sample. Since

the chain we run in MCMC depends the choice of the proposal variance (assuming

the proposal distribution is symmetric about 0 and follows a Gaussian distribution),

therefore each RWMH or TMCMC chain has an index λ that takes into account all the

parameters associated with the prescribed algorithm. We now state some preliminary

notions of adaptive Markov chains without restricting our focus to either RWMH or
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TMCMC. Let {Pλ} be a collection of Markov chain kernels with an associated parameter

λ, and a stationary distribution π such that

πPλ = π

As shown in Meyn and Tweedie [MT93], if the family of Markov kernels {Pλ} can

be shown to be φ-irreducible and aperiodic (which is the case for RWMH [RT96] and

TMCMC [DB11]), then the total variation distance of the Markov kernel, for a fixed

λ, with respect to π goes to zero for any starting point x0. This means if we run a

Markov chain for a fixed choice of the parameter λ, irrespective of our starting value,

we converge to a process with distribution π- the target distribution.

While convergence is guaranteed, the rate of this convergence however depends on

various choices of the parameter λ. It has been shown that for distributions that are

spherically symmetric, the RWMH chain and the TMCMC chain both are geometrically

ergodic ( see Chapter 2 and Roberts and Tweedie [RT96]). This means there ∃ a

function V ≥ 1 and finite at least at one point, and also constants 0 < ρ < 1 and M , so

that for each λ,

||Pλn(x, .)− π(.)||TV ≤M.V (x)ρn ∀n ≥ 1 (5.1.1)

where ||ν||TV denotes the total variation norm. This condition implies convergence at a

geometric rate for each λ (which can represent the proposal variance), but the function

V and M will depend on the choice of λ. Under certain regularity conditions, such an

optimal choice of λ has been suggested for both RWMH ( see Roberts, Gelman and

Gilks [RGG97]) and TMCMC (see Chapter 3 and Chapter 4). However, from a

practical point of view, it would be desirable to have an algorithm that starts from a
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random value of the proposal variance and then sequentially updates it at each iteration

such that in the long run, this adaptive algorithm converges to the target density π,

thereby eliminating the problem of choice of the parameter λ.

In formal terms, let Xn be a X valued random variables and represents the state of

the system at time n. We denote Λn as a Z valued random quantity that specifies the

parameter. We define a filtration Fn on (Xn,Λn) as follows

Fn = σ (X0, X1, · · · , Xn,Λ0,Λ1, · · · ,Λn) (5.1.2)

Therefore we have for any set A belonging to the projection of Fn on the X space,

P [Xn+1 ∈ A|Xn = x,Λn = λ,Fn−1] = Plambda(x,A) x ∈ X λ ∈ Z (5.1.3)

Typically we define then

W n((x, λ), A) = P [Xn ∈ A|X0 = x,Λ0 = λ] x ∈ X λ ∈ Z (5.1.4)

W n represents the unconditional distribution obtained by integrating over Λj’s for j < n.

We define the total variation distance between the adaptive chain and the target density

π

U(x, λ, n) = ||W n((x, λ), .)− π(.)||TV (5.1.5)

The chain will be ergodic if this distance goes to 0 ans n → ∞ whatever be my choice

of x and λ. It can be shown that the adaptive chain may not be ergodic [RR09].

However Roberts and Rosenthal have provided some sufficient conditions to check for the
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ergodicity of the adaptive chain under two scenarios- the uniformly converging case and

the non-uniformly converging case, the second being a relaxation of the first condition

[RR07].

5.2 Ergodicity of the Adaptive TMCMC chain

We start with the following theorem due to Roberts and Rosenthal [RR07].

Theorem 4 Consider an adaptive Markov Chain algorithm, on a state space X and

adaptation space Y denoted by {Pλ} having a stationary distribution π. Then under the

following conditions, the algorithm is ergodic.

1. ( Simultaneous uniform ergodicity) For any arbitrary ε > 0, there exists a Nε

such that || {Pλ}N (x, .)− π(.)||TV < ε for any x ∈ X and y ∈ Y.

2. ( Diminishing adaptation) Define

Dn = sup
x∈X
||
{
PΛn+1

}N
(x, .)− {PΛn}

N (x, .)||TV (5.2.1)

which is a Fn+1 measurable random variable. Then

Dn
P→ 0 as n→∞ (5.2.2)

The condition of Simultaneous uniform ergodicity can be relaxed and ergodicity will

hold if

Mε(x, λ) = inf
{
n ≥ 1 : || {Pλ}N (x, .)− π(.)||TV < ε

}
(5.2.3)

is finite for any choice of x, λ and ε. Thus for both the RWMH and TMCMC chains, if

the adaptations are done so as to satisfy the conditions stated in Thm 4 or the relaxation
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of the conditions for the non uniformly converging case as discussed above. For jointly

compact sample space (X ) and adaptation space (Y), there is a simpler analog of the

sufficient conditions in Thm 4, as discussed by Roberts and Rosenthal(2007). A similar

result but with subtle modifications that takes into account the restriction of moves for

TMCMC is established in a simplified form in textbfCor 1.

Note that the TMCMC chain is defined only over Euclidean spaces and so both X and

Y take values either from Rd or some subspace of it. Under such assumptions, the

following corollary to Thm 4 holds for adaptive TMCMC chains.

Corollary 1 Suppose {Pλ} be a class of TMCMC chains with a Gaussian proposal

distribution having 0 mean and λ being the variance of the proposal density. Assume

that the proposal density is uniformly bounded and the space X × Y is compact with

respect to a metric topology. With respect to some reference measure ν ( usually the

Lebesgue measure), the n-step Markov proposal kernel has continuous density in X ×Y

space for n ≥ 2. Also assume that the Radon Nikodym derivative of π with respect to

this reference measure is also continuous.Then if an adaptation is performed over the

parameter space Λ for this chain and if such a version of adaptive TMCMC satisfies the

condition in Theorem 1 (2), then the adaptive chain is ergodic.

Proof 4 Suppose for a fixed λ, we start a TMCMC chain from a point x ( a d-

dimensional point). Let αλ(x) be the acceptance rate of the TMCMC chain (probability

that we move from from our current position). Explicitly it is of the form
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αλ(x) =
d

2d

∑

bi ∈ {−1,+1}

∀i = 1(|)d



∫ ∞
0

min

{
1,
π(x1 + b1ε, x2 + b2ε, . . . , xd + bdε)

π(x1, x2, . . . , xd)

}
qγ(ε)dε

(5.2.4)

Now, we can write {Pλ} (x, dz) as a mixture of two components as in Eqn refeq:cor1.

{Pλ} (x, dz) = (1− αλ(x)) δx(z) + rλ(x, z)ν(dz) (5.2.5)

Note that for the first step transition in TMCMC, rλ(x, z) is positive only for those

values of z that can be reached from x in the first step, meaning that z is either on

the line passing through x and parallel to the line y = x or on the line orthogonal to

it at and intersecting at x. For this first step transition, the proposal Markov kernel

therefore does not possess a continuous Radon Nikodym derivative. However for n-th

step transition probability, where n ≥ 2,

{Pλ}n (x, dz) = (1− αλ(x))n δx(z) + rλ
n(x, z)ν(dz) (5.2.6)

where z can take any value from X . In the above context ν is any dominating measure,

but we consider it to be the Lebesgue measure on Rd without loss of generality and thus

it can be easily checked that the measures δx and ν are mutually singular. We can then

say

| {Pλ}N (x, .)− π(.)||TV = (1− αλ(x))n +
1

2

∫
X
|rλn(x, z)− s(z)|ν(dz) (5.2.7)
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where π(dz) = s(z)ν(dz) and the integral is basically the Lebesgue-Stieltjes integral.

By bounded convergence theorem this quantity is jointly continuous in X × Y. By the

hypothesis this quantity converges to 0 for each λ and using compactness of X × Y,

this convergence is uniform. This automatically implies that the second integral on the

right hand side of Eqn 5.2.7 converges to 0 uniformly for all λ as n → ∞ and this

establishes the condition (1) of simultaneous uniform ergodicity in Thm 4.

textbfCor 1 gives an easy technique of determining for a class of proposal distributions,

the ergodic behavior of the adaptive TMCMC chain. However in most situations that

we deal with in real life, the spaces X or Y are not compact. However the adaptation

used by Haario et al [HT01] assumes the sample space to be compact and proposal

kernels to be Multivariate normal centered at x, the current point and having variance

covariance matrix λ. The way the algorithm is designed, guarantees that this parameter

set is also closed and bounded and this implies by Cor 1 that Haario et al ’s adaptive

chain for both RWMH and TMCMC are ergodic.

5.3 Some methods of adaptation in TMCMC

In this section, we introduce to some methods of adaptation in TMCMC, which are

obtained as natural analogs to the adaptive methods in Random Walk Metropolis

Hastings algorithms.The three methods we have used are

� Haario et al ’s method ( MCMC analog: see [HT01])

� SCAM algorithm (MCMC analog: see [HHT05])

� RAMA algorithm (MCMC analog: see [RR09])

� Adaptation by Stochastic approximation
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Now we shall briefly describe the modifications to these methods introduced for appli-

cation in case of the TMCMC chain.

5.3.1 Haario et al ’s method (2001)

In this method, the sample space X is assumed to be compact. At each iteration, we

update the proposal variance (assuming the proposal distribution is Gaussian with mean

0) such that the nth stage iterate of the parameter, say λn converges and condition (2)

of Diminishing adaptation in Thm 4 holds. The adaptation rule in this case is

ηn
2 = η0

2 n ≤ N0 (5.3.1)

= sdvar(ε1, ε2, · · · , εn−1) + sdδId n > N0 (5.3.2)

where ηn
2 is the proposal variance at the nth stage and η0 is a constant. Note that

for n > N0, the actual adaptation is taking place. sd is a parameter depending on

the dimension d. As a basic choice, we adopt the optimal value of scaling in TMCMC

[DB13]. This optimal value is around (2.42)2

d
which is very close to the value obtained for

RWMH in [RGG97]. The choice of N0 is flexible, but the bigger it is, the lesser will be

the impact of adaptation on the chain. While computing the variance of the εi’s in the

2nd term, we take only those values for which the move is accepted, or in other words,

the ones that causes the chain to move.

As already discussed, if one takes the sample space to be compact, then Haario et al ’s

method satisfies the first condition of Thm 4. That the second condition holds is quite

easily seen as the empirical variance term is a consistent estimator for the true proposal

covariance.

Intuitively the above choice of adaptation can be explained in the following way. Suppose
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our proposal density is a mixture of two normal distributions, one component of which

has very high mixing proportion and converges in distribution to the Normal distribution

with the optimal proposal variance and the other part is normal with constant variance

( for a fixed dimension d), and with very low mixing proportion. Formally,

qn(ε) = N

(
0,

(0.1)2

d

)
n ≤ 2d (5.3.3)

= βN

(
0,

(0.1)2

d

)
(5.3.4)

+(1− β)N

(
0, sdvar

(
ε1, ε2, · · · , εn−1

))
n > 2d (5.3.5)

Note that the proposal variance for the above Mixture adaptation has a form analogous

to the Haario et al ’s method discussed above but with a particular choice of N0 depend-

ing on the dimension d and of δ which is equal to (0.1)2.Another method very similar

in lines to Haario et al ’s method is the SCAM algorithm.

5.3.2 SCAM Algorithm

SCAM algorithm for TMCMC is primarily again a modification of the basic approach

suggested by Haario et al.In this case, we choose

ηn
2 = 52 n ≤ 10 (5.3.6)

= sd

[
var (ε1, ε2, · · · , εn−1) + 0.05

]
n ≥ 11 (5.3.7)

In the MCMC case, however the SCAM algorithm is quite different from that of the
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TMCMC method, where for n ≥ 11, when we update the variance of the jth co-

ordinate, we use the variance of the jth co-ordinate of each of the sample points in the

2nd expression.So SCAM for MCMC updates the proposal variance for each co-ordinate

separately. In TMCMC, since we are generating a single ε at each stage, we are not

required to deal with different dimensions separately and thus our method looks very

similar to that of the Haario et al ’s method.

5.3.3 Regional Adaptive Metropolis Algorithm (RAMA)

In this method, we split the space X into several partitions X1,X2, · · · ,Xs. The main

abstraction underlying this approach is that we run different proposal densities over

different regions, but aim to make the acceptance probability close to the optimal value

of 0.439 for non-adaptive TMCMC (seeChapter 3 and Chapter 4). For each of the s

regions, we assign a particular value an
k for the kth region and nth iteration, such that

if our current location x belongs to the region k, then we generate ε from a proposal

density N(0, exp(an
k)) for the nth iterate. As an example, for a 2-partition RAMA, our

usual choice of the proposal density can be

qn(ε) = N
(
0, exp(an) I||x||<d + exp(bn) I||x||>d

)
(5.3.8)

We do not update the coefficients an
k’s every iterate. But we fix a number of iterates M ,

such that every M iterations onwards, these coefficients are updated by a small amount

δn. After each batch of M iterations, we check the number of acceptances in that

particular batch and from each region. If for region k, it is found to be less than 0.439,

then we decrease the coefficient by δn, otherwise we increase it by the same amount.

We use Roberts and Rosenthal’s choice of δn [RR09] given by δn = min(0.01, 1√
n
). The

initial choice of coefficients is done by randomly generating from a U(−2, 2) distribution
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so as to cover a broad spectrum of starting values of the coefficients in constructing this

adaptive chain.

5.3.4 Adaptation by Stochastic Approximation

The final method of adaptation we discuss for TMCMC uses the concept of Stochastic

approximation, introduced by Robbins and Monro [RM51], where we recursively update

a parameter sequence {θn} in the following way

θn+1 = θn + cn(h(θn) + εn+1) (5.3.9)

where h represents a function that is estimated with the noise {εn}. If the noise

process dies out, then {θn} will converge to the solution of h(θ) = 0 under appropriate

conditions. For our adaptation, we take cn to be a sequence of real numbers lying

between 1
n

and 1√
n
.Such a choice ensures the result in Eqn 5.3.10.

∞∑
n=0

cn =∞
∞∑
n=0

cn
2 <∞ (5.3.10)

We proceed as per the TMCMC algorithm, but at each iterate, we update the proposal

standard deviation ηn as in Eqn 5.3.11.

ηn+1 = max {ηn + cn (α(Xn, εn)− u) , 0} (5.3.11)

where α(Xn, εn) represents the acceptance rate value at the nth iterate and u is the

optimal scaling value (0.439) for TMCMC algorithm. We update the proposal variance

irrespective of whether the move has been accepted or rejected. Note that if the expected

acceptance rate M(ηn) = E [α(Xn, εn)] is a decreasing function of the choice of ηn (which
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is quite intuitively justified) and M
′
(ηopt) for the optimal proposal variance ηopt exists

and positive, then the algorithm will converge to a chain having optimal acceptance rate

of 0.439.

5.4 Concluding remarks

In this chapter, we developed the theory for adaptive versions of TMCMC and then

defined several adaptation mechanisms. It would be curious to investigate the perfor-

mance of these approaches to the RWMH analogs. For this purpose, we need to define

some measure of performance that will aid us in this process. In the next chapter, we

shall consider Simulation experiments and much of our focus there would be on these

adaptive measures and their relative performance with respect to RWMH adaptations.
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Chapter 6

Simulation experiments − Case
Studies

So far, we have mostly indulged in developing the theory of our additive TMCMC

model. However, the theoretical results must be validated through applications and

experiments. This is what we seek to achieve now. In this chapter, we shall consider

some simulation experiments over varying dimensions and proposal densities with the

aim of gaining new insight on our methods and to compare our method with the

RWMH technique purely from an experimental point of view. We first determine some

performance evaluation measures that will aid us in our comparison of the two processes,

RWMH and TMCMC for non-adaptive as well as the adaptive versions.

6.1 Performance evaluation of Adaptive TMCMC

with respect to Adaptive MCMC

In this section, we present a broad comparative analysis of the various adaptive versions

of RWMH and TMCMC. We use three types of performance evaluation techniques.

� Acceptance Rate: A principal reason of using adaptive versions and seeking

optimal scaling is to ensure that the acceptance rate is maximized meaning that

our chain moves fast in space with respect to time. This is crucial because
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otherwise if one selects a sample out of this process, most of the observations

may be identical and this would reduce the effective sample size of the simulation.

� Average Jump Size (AJS): We record each jump length, the distance between

between Xn+1 and Xn at each n ≥ NB, where NB is the burn-in time, and average

over all these jumps. A higher value of jump size will mean higher variation in

the simulated observations after burn-in.

� Integrated Autocorrelation Time (IACT) / Integrated partial autocor-

relation time (IPACT): After burn-in, we compute the autocorrelation function

of the chain upto a sufficiently high order. Then we define IACT as in Eqn 6.1.1.

IACTN =

[
1 + 2

N−1∑
t=1

(
1− t

N

)
ρ̂(t)

]
(6.1.1)

where ρ̂(t) is the sample autocorrelation function of order t and N is a predeter-

mined maximum order selected for integration.

As N →∞, then this the expression in Eqn 6.1.1 reduces to the following.

IACT = 1 + 2
∞∑
t=1

ρ̂(t) (6.1.2)

IACT actually manages to pool the effect of autocorrelation of various orders

together to look in some sense at the aggregate dependence of the series on the

past observations. A higher value of IACT would mean the chain would show less

amount of variation and the moves may be restricted.

In the same way, we computed also IPACT - the integrated partial autocorrelation

time where we replace the ACF’s in the expression in Eqn 6.1.1 by the PACFs.

The rest is analogous to IACT .
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� Kolmogorov Smirnov Test Statistic (KST): Kolmogorov-Smirnov test is a

very standard test for equality of two distributions. In this case we try to observe

how closely the Adaptive MCMC and Adaptive TMCMC chains approximate the

actual target distribution π. We run a number of chains, say L, starting from

one fixed point for both MCMC and TMCMC adaptations. Corresponding to

each time point t, we shall thus get L many iterates. The notion is that as time

t increases (specially after burn-in), these L many iterates should be close to an

independently drawn random sample from the target distribution π. So, if we

look at the KST statistic for the empirical distribution of these iterates along a

particular dimension with respect to the marginal of π along that dimension, we

should find the test statistic decreasing with time and finally being very close

to 0 after a certain time point. What we try to observe is how for a particular

adaptation, the KST statistic for MCMC and TMCMC analogs behave and how

closely it approximates π after burn-in. The main interest would lie in observing

if one method has a uniformly better KST statistic value compared to the other.

All these measures highlight different aspects of performance ( the acceptance rate,

the variation of state in the chain after burn-in, convergence to π etc.). In Tab 6.2

and Tab 6.3, we present the results of a comprehensive simulation study for different

dimensions and change of starting proposal variance, that would help compare the

performance of various adaptive procedures in both MCMC and TMCMC set up,

corresponding to each of the aforementioned evaluation measures.

Now we test for simulation experiments on a wide range of dimensions and proposal

densities.
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6.2 Basic simulation of non-adaptive methods

First we compare the performance of RWMH and TMCMC for corresponding to 3 differ-

ent choices of proposal variance, with scalings l being the optimal one 2.42 (TMCMC),

6 and 10 respectively. We considered data of varying dimensions ranging from 2 to

200 in order to get hold of a broader picture. For our data analysis we considered

the target density π to be a MVN(0, I) distribution and the starting point x0 to be

randonmly generated from U(−2, 2) distribution. The proposal density was also taken to

be Gaussian ( with independent co-ordinates as for RWMH) having mean 0 and variance

l2

d
for each co-ordinate, where l is the value of the scaling constant. In each run, the

chain was observed upto 1,00,000 trials (accepted or rejected). The choice of burn-in was

made a bit subjectively, removing one fourth of the total number of iterates initially and

it was found via simulation study that was quite sufficient- both RWMH and TMCMC

seemed to reach burn-in well before that time, but still we were more conservative. All

calculations of AJS, IACT , IPACT were done corresponding to the process after burn-

in in order to ensure stationarity. In calculating the integrated autocorrelation time,

we considered 25 lags of ACF and then summed over as in Eqn 6.1.1. IPACT was

similarly computed. For computing the KST, we repeated the experiment with the same

starting point and keeping all other factors same, 100 times and then averaged over all

such iterates along all the co-ordinates. Table 6.2 presents the detailed results of the

simulation experiment. The sample path plots and the decreasing trend in KST over

time for both RWMH and TMCMcorresponding to different scalings and idmensions

are also presented.
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6.3 Basic simulation of adaptive methods

For the adaptive methods, it was found that the choice of the initial value of the proposal

density ( corresponding to the ones where it is not specified) did not significantly change

the results if the proposal variance is taken more or less close to the target density

variance. The basic mechanism of simulation for these adaptive methods is the same as

in the non-adaptive set up. In RAMA 2, we considered the two partition of the data

space as ||x|| < 2 and ||x|| > 2, while in RAMA 3 , we considered the 3-fold partition as

||x|| < 2, 2 < ||x|| < 5 and ||x|| > 5. For the RAMA procedures, we needed to update

the parameters after running the process for some time. For the simulation experiments,

for each of coefficients, we ran the process for 100 times, before updating the coefficients.

Overall, we used 1000 many updates implying that the total length of the chain was of

1,00,000 runs. We used Haario et al ’s method proposed in 2001 [HT01] with N0 = 2 and

δ = 0.10 in textbfEqn 5.3.1 and η0 = 1. The results were compared to the more refined

approach suggested in Haario et al in 2005 [HHT05]. For the stochastic approximation

procedure, we took cn to be 1
n

as it satisfies the desired properties of convergence. Table

6.3 presents the detailed results of the simulation experiment. The sample path plots

and the decreasing trend in KST over time for both RWMH and TMCMC corresponding

to different scalings and dimensions are also presented.

6.4 Observations and Concluding remarks

We first summarize the main observations from the graphs and the tables corresponding

to these simulation experiment.

� As anticipated, TMCMC seems to have a uniformly better acceptance rate than

RWMH for all dimensions and all choices of proposal variances. There is sufficient
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gain in acceptance rate over RWMH even for 2 dimensions and the difference

broadens once we move to higher dimensions or consider higher proposal variances.

That high proposal variance would affect the performance of RWMH is quite

intuitive as getting an outlying observation in any of the d co-ordinates becomes

more likely and that may affect the acceptance rate. Since we update by a single

variable in TMCMC, the chances are less compared to RWMH.

� For optimal scaling as theoretically proved, TMCMC has a higher acceptance

rate of 0.439 corresponding to 0.234- the optimal acceptance rate for the RWMH

algorithm. An interesting observation from Table 6.2 is that even from dimension

2, our acceptance ratio corresponding to the optimal scaling of 2.4 is very close to

0.44. This is not the case for RWMH. For very high dimensions ( 100 and 200), the

optimal acceptance rate is attained more or less for both TMCMC and RWMH

but our optimal acceptance ratio seems to be far more robust across dimensions

(specially the lower dimensions) compared to RWMH.

� Another form of robustness is achieved over RWMH by changing the scale from 2.4

by a small amount, say 6. We witness much less significant drop in the acceptance

rate under this change of scale than RWMH which often falls pretty badly and

becomes almost negligible.

� Despite this inherent lack of randomness due to deterministic transfprmation in

TMCMC, we find that in terms of convergence, we are almost as good as RWMH

for smaller proposal variances and lower dimensions an dseem to have a slight

edge over these methods for higher dimensions ans higher proposals. This is mainly

because, for RWMH in higher dimensions, the effective sample size reduces greatly

and so, the chain remains static for a good length of time and this compromises

with the convergence.
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� The measures IACT , IPACT are extremely close, RWMH has a little less value

compared to TMCMC in lower dimensions but in higher dimensions, TMCMC

performs better than RWMH. The same is true for the average jump size (AJS)

as well. For TMCMC AJS value is not very high but seems to be quite consistent.

For RWMH, the AJS value is more in lower dimensions, implying that it has better

variation than TMCMC after burn-in, but for high dimensions, the AJS value

drops significantly as the chain does not move adequately and very few jumps are

significant.

� The adaptive versions of TMCMC perform really well and unlike in case of RAMA

2 or RAMA 3, where RWMH does not quite reach the optimal value of acceptance

rate for 10 dimenions even after 1,00,000 runs, TMCMC is quite close to the

optimal value of 0.439 for dimension 10. In fact for dimension 100 in RAMA

3, we witnessed a significant drop in acceptance, but TMCMC stays robust.

However, Haario’s method does not seem to be very consistent both for RWMH

and TMCMC. Atchade’s method of stochastic approximation stands out as the

best for both RWMH and TMCMC.

The overall assessment from our point of view is that TMCMC has less computational

and time complexity ( which is very significant for higher dimensions) than RWMH

and also a much better acceptance rate for any dimension and proposal over RWMH.

In addition, it has nice convergence properties- it is almost geometrically ergodic for

a class of sub-exponential distributions (Chapter 2) and as observed from simulation

experiments, the convergence is at par with MCMC despite the deterministic approach

for lower dimensions, and actually better for higher dimensions. Also, the optimal

acceptance rate is way higher than RWMH and is much more stable across dimensions

and robust across scale changes. Finally, we find that the adaptive versions of TMCMC

show better and more stable convergence to optimal acceptance rate than RWMH. All
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these points very strongly prescribe that one should prefer to use TMCMC over RWMH

in any dimension and for any proposal.
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Fig. 6.4.1: Sample paths of RWMH and TMCMC paths for two cases: (left) dimension=5
and proposal variance=10 (aong each co-ordinate for RWMH) (right) dimension=10 proposal
variance=5 (along each co-ordinate for RWMH), proposal distribution normal for TMCMC
and independent normal in each co-ordinate for RWMH and centered at 0.
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Fig. 6.4.2: acf plot of sample paths for RWMH and TMCMC for dimension=5 and proposal
distribution normal for TMCMC and independent normal for RWMH along each co-ordinate,
with center 0 and variance 0.01 (along each co-ordinate for RWMH).

79



T
a
b
le

6
.2
.1
:

T
h
e

p
er

fo
rm

an
ce

ev
al

u
at

io
n

of
R

W
M

H
an

d
T

M
C

M
C

ch
ai

n
s

fo
r

va
ry

in
g

d
im

en
si

on
s.

It
is

as
su

m
ed

th
at

p
ro

p
os

al
h
as

in
d
ep

en
d

en
t

n
or

m
a
l

co
m

p
on

en
ts

fo
r

R
W

M
H

w
it

h
sa

m
e

p
ro

p
os

al
va

ri
an

ce
al

on
g

al
l

co
-o

rd
in

at
es

.
T

h
e

p
ro

p
os

al
sc

al
es

ra
n
ge

fr
om

op
ti

m
a
l

(2
.4

)
to

1
0
.

A
ll

ca
lc

u
la

ti
on

s
d
on

e
af

te
r

b
u
rn

in

D
im

en
si

on
P

P
P

P
P
P

P
P
P

S
ca

li
n
g

T
es

t
A
cc
ep
ta
n
ce

ra
te

(%
)

IA
C

T
IP

A
C

T
A

J
S

A
vg

.
K

-S
te

st

R
W

M
H

T
M

C
M

C
R

W
M

H
T

M
C

M
C

R
W

M
H

T
M

C
M

C
R

W
M

H
T

M
C

M
C

R
W

M
H

T
M

C
M

C

2
2.

4
34

.9
44

.6
6.

08
7.

04
2.

46
2.

55
0.

93
0.

74
0.

16
51

0.
16

57
6

18
.6

6
29

.1
5

7.
08

8.
08

2.
52

2.
56

0.
79

0.
62

0.
16

59
0.

16
55

10
3.

83
12

.3
6

13
.7

4
11

.9
1

2.
83

2.
77

0.
22

0.
32

0.
16

76
0.

16
55

5
2.

4
(o

p
t)

28
.6

44
.1

2
9.

98
12

.4
5

2.
67

2.
77

1.
15

0.
79

0.
16

59
0.

16
64

6
2.

77
20

.2
0

15
.6

14
.1

1
2.

77
2.

81
0.

39
0.

48
0.

16
93

0.
16

74
10

0.
45

12
.4

4
18

.2
6

15
.6

1
2.

88
2.

83
0.

61
0.

42
0.

16
97

0.
16

78

10
2.

4
(o

p
t)

25
.6

44
.1

8
15

.1
6

18
.2

6
2.

77
2.

88
1.

22
0.

73
0.

16
67

0.
16

77
6

1.
37

20
.3

4
17

.5
5

16
.3

1
2.

91
2.

86
0.

25
0.

49
0.

18
00

0.
16

88
10

0.
03

7.
94

18
.7

9
15

.2
5

2.
83

2.
71

0.
08

0.
14

0.
17

48
0.

16
74

10
0

2.
4

(o
p
t)

23
.3

44
.1

18
.1

4
18

.4
6

2.
88

2.
89

1.
34

0.
73

0.
17

94
0.

16
71

6
0.

32
20

.6
18

.6
2

18
.2

5
2.

89
2.

88
1.

05
0.

69
0.

17
87

0.
16

84

20
0

2.
4

(o
p
t)

23
.4

44
.2

18
.4

18
.6

7
2.

88
2.

89
1.

3
9.

22
0.

18
13

0.
17

35
6

0.
33

20
.7

18
.8

6
18

.7
4

2.
89

2.
89

0.
09

0.
54

0.
18

32
0.

17
55

80



T
a
b
le

6
.3
.1
:

T
h
e

p
er

fo
rm

a
n
ce

ev
al

u
at

io
n

of
va

ri
ou

s
ad

ap
ti

ve
ve

rs
io

n
s

of
R

W
M

H
an

d
T

M
C

M
C

ch
ai

n
s

fo
r

va
ry

in
g

d
im

en
si

on
s.

It
is

as
su

m
ed

th
at

p
ro

p
os

al
h
a
s

in
d

ep
en

d
en

t
n
or

m
al

co
m

p
on

en
ts

fo
r

R
W

M
H

w
it

h
sa

m
e

p
ro

p
os

al
va

ri
an

ce
al

on
g

al
l

co
-o

rd
in

at
es

.

D
im

en
si

on
P

P
P

P
P
P

P
P
P

M
et

h
o
d

T
es

t
A
cc
ep
ta
n
ce

ra
te

(%
)

IA
C

T
IP

A
C

T
A

J
S

A
vg

.
K

-S
te

st

R
W

M
H

T
M

C
M

C
R

W
M

H
T

M
C

M
C

R
W

M
H

T
M

C
M

C
R

W
M

H
T

M
C

M
C

R
W

M
H

T
M

C
M

C

2

H
aa

ri
o

77
.3

63
.9

11
.9

4
9.

35
2.

74
2.

70
0.

29
0.

55
0.

16
84

0.
17

74
S
C

A
M

21
.8

41
.2

6.
21

6.
59

2.
46

2.
37

0.
77

0.
77

0.
17

72
0.

17
52

R
A

M
A

-2
40

.2
49

.4
2

7.
03

7.
27

2.
54

2.
57

0.
87

0.
69

0.
21

04
0.

21
11

R
A

M
A

-3
36

.6
50

.6
6.

54
7.

68
2.

44
2.

57
0.

81
0.

72
0.

21
36

0.
21

47
A

tc
h
ad

e
36

.5
48

.0
3

6.
01

8.
56

2.
45

2.
65

0.
93

0.
61

0.
21

06
0.

21
19

10

H
aa

ri
o

45
.3

7
74

.9
14

.0
6

16
.9

2
2.

81
2.

86
1.

02
0.

45
0.

16
67

0.
17

88
S
C

A
M

4
22

.3
18

.3
7

16
.0

1
2.

94
2.

84
0.

09
0.

54
0.

17
95

0.
17

82
R

A
M

A
-2

34
.7

40
.0

6
13

.9
9

15
.2

3
2.

81
2.

82
1.

00
0.

67
0.

21
04

0.
21

14
R

A
M

A
-3

17
.3

39
.4

17
.0

0
16

.1
6

3.
11

2.
90

0.
57

0.
61

0.
21

25
0.

21
38

A
tc

h
ad

e
22

.4
42

.2
13

.2
1

15
.2

5
2.

76
2.

82
1.

21
0.

77
0.

21
05

0.
21

37

10
0

H
aa

ri
o

17
.9

3
76

.9
4

17
.0

1
18

.6
8

2.
89

2.
88

0.
07

0.
33

0.
18

5
0.

17
79

S
C

A
M

0.
62

11
.3

2
17

.0
0

16
.2

4
2.

88
2.

86
0.

06
0.

48
0.

19
12

0.
19

76
R

A
M

A
2

20
.1

9
42

.1
18

.2
8

18
.4

3
2.

88
2.

89
0.

69
0.

75
0.

21
35

0.
21

22
R

A
M

A
3

6
40

.0
9

18
.8

3
18

.4
4

2.
89

2.
88

0.
03

0.
84

0.
21

54
0.

21
41

A
tc

h
ad

e
23

.1
43

.9
18

.1
3

18
.4

4
2.

88
2.

88
1.

27
0.

75
0.

21
20

0.
21

19

81



0 2 4 6 8 10

0.
0

0.
5

1.
0

1.
5

scale

di
ffu

sio
n 

sp
ee

d

0 2 4 6 8 10

0.
0

0.
5

1.
0

1.
5

scale

di
ffu

sio
n 

sp
ee

d

TMCMC
RWM

Fig. 6.4.3: Comparison of diffusion speeds of TMCMC and RWM in the iid case.
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Fig. 6.4.4: Comparison of diffusion speeds of TMCMC within Gibbs and RWM within Gibbs
in the iid case, with c = 0.3.
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Fig. 6.4.5: Comparison of diffusion speeds of TMCMC within Gibbs and RWM within Gibbs
in the independent but non-identical case, with ξ = 10.
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Fig. 6.4.6: Comparison of diffusion speeds of TMCMC within Gibbs and RWM within Gibbs
in the independent but non-identical case, with ξ = 10, c = 0.3.
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Fig. 6.4.7: Comparison of diffusion speeds of TMCMC and RWM in the dependent case.
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Fig. 6.4.8: Comparison of diffusion speeds of TMCMC within Gibbs and RWM within Gibbs
in the dependent case, with c = 0.3.
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(a) GENERAL
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(b) SCAM
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(c) RAMA 2
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Fig. 6.4.9: K-S test comparison across the various time points for four methods
starting from top left to bottom right a) General Non-adaptive method b) SCAM
algorithm by Haario et al [HHT05] c) RAMA algorithm with 2 partitions and d)
Atchade’s method. The data is two dimensional and starting point is (1, 1)
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