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Introduction

Topic model or admixture type models can be used for clustering metagenomic samples in 16s RNA counts
data. However, these topic models while assuming all the features (the Operational Taxonomic Units or
OTUs) to be independent. However, several OTUs may belong to the same species, and again several species
may form one family of the microbiome. This hierarchical structure in the features is something we may be
interested in exploring going forward and modifying the topic model accordingly. I present here the model
which may be used to fit the topic model taking into account this hierarchical structure.

The core idea behind this model has been derived from the Multiscale Topic Tomography model described in
this paper.

The Model

Let us start with the counts data cN×G where N represents the number of samples and G represents the
number of OTUs. Using Matt Taddy’s model, we can write

cn∗|cn. ∼Mult(cn., pn∗)

png =
K∑
k=1

ωnkθkg

Multi-resolution model for topics We build the hierarchical tree as follows. Let there be S levels in
the hierarchical tree. The OTUs form the leaves of the tree, while the other levels may represent the family,
species, genus etc.

θ
(S)
kl = θkl l = 0, 1, 2, · · · , NS − 1 (1)

θ
(s)
kl =

∑
h:is(h)=l

θ
(s+1)
kh s = 0, 1, 2, · · · , S − 1, l = 0, 1, 2, · · · , Ns − 1 (2)

(3)

where Ns represents the number of leaves if the tree is truncated at level s and is(.) is a function that takes
the unit in level s+ 1 and maps it to the family it belongs to in level s. Note that NS = G.

Latent representation of model Now if we assume that

cn. ∼ Poi(λn)

Then one can write
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cnl ∼ Poi(λn
K∑
k=1

ωnkθ
(S)
kl )

Let znkg represents the number of counts from sample n and from OTU l that comes from k th subgroup or
cluster. By definition,

K∑
k=1

znkl = cnl

Since the summation of two independent Poisson random variables is also a Poisson variable with mean equal
to the sum of the means of the original random variables, we can infer that

znkl ∼ Poi(λnωnkθ(S)
kl )

Let zkg represents the number of latent counts coming from the k th subgroup and feature g across all the
samples.

zkl =
N∑
n=1

znkl

So,

zkl ∼ Poi(θ(S)
kl

N∑
n=1

λnωnk)

Multi-resolution model for latent variables Suppose we are at a particular iterative step of our model
where we have plausible values of ω and θ (we can start with the same prior for these parameters as Taddy
model). Given ω, we use the following step to estimate a refined θ.

From Eqn 8 of Matt Taddy’s paper), we can write

znkl = cnl
ωnkθkl∑K
h=1 ωnhθhl

So,

zkl =
N∑
n=1

cng
ωnkθkl∑K
h=1 ωnhθhl

Note that zkg and zk′g for k 6= k
′ are independent. Then the multiscale framework for θ can be translated to

multiscale framework for z as well. Under this framework, we have

z
(S)
kl = zkl l = 0, 1, 2, · · · , NS − 1 (4)

z
(s)
k(l) =

∑
h:is(h)=l

z
(s+1)
kh s = 0, 1, 2, · · · , S − 1, l = 0, 1, 2, · · · , Ns − 1 (5)

(6)
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We now define

µ
(s)
kl =

N∑
n=1

λnωnkθ
(s)
kl l = 0, 1, 2, · · · , Ns − 1

and it can be shown easily that

z
(s)
k(l) ∼ Poi(µ

(s)
kl ) l = 0, 1, 2, · · · , Ns − 1

Transformation of variables on hierarchy Instead of using µ(s)
kg along the multi-resolution tree, we

transform the parameters as follows

β
(s)
k(l,hl) =

µ
(s+1)
khl

µ
(s)
kl

s = 0, 1, 2, · · · , S − 1, l = 0, 1, 2, · · · , Ns − 1, is(hl) = l, l = 1, 2, · · · , c(l)

where c(l) is the number of children of the node l.

We only need the highest level wavelet parameter µ(0)
k0 and β

(s)
k(l,hl) instead of µ(s)

kl . We work on these
transformed parameter space. The transformed parameters are easy to work with as they are independent.
We assume the priors to be

µ
(0)
k0 ∼ Gamma(.|νµ, δµ)

β
(s)
k(l,.) ∼ Dirc(l)

(
.| 1
c(l) ,

1
c(l) , · · · ,

1
c(l)

)
where c(l) is the number of children for the node l.

Prior on wavelet parameters The prior distribution is therefore given by

P (µ|δ) =
K∏
k=1

Gamma(µ(0)
k0 |νµ, δµ)×

K∏
k=1

S−1∏
s=0

Ns−1∏
l=0

Dirc(l)

(
β

(s)
k(l,.)|

1
c(l) ,

1
c(l) , · · · ,

1
c(l)

)

Loglikelihood given wavelet parameters The loglikelihood of µ is given as follows

L(µ) =
2S−1∑
l=0

K∑
k=1

logPoi(z(S)
k(l)|µ

(S)
kl ) (7)

=
S−1∑
s=0

Ns−1∑
l=0

K∑
k=1

logMult
(
z

(s+1)
k,. |β(s)

k(l,1), β
(s)
k(l,2), · · · , β

(s)
k(l,c(l))

)
+

K∑
k=1

logPoi(z(0)
k(0)|µ

(0)
k0 ) (8)

(9)

The z values estimated may not always be integers but we assume that they are approximated to the nearest
integer. This is the same policy also adopted by the authors in the multiscale Topic Tomography paper.
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MAP estimates of wavelet parameters Given the prior and the log likelihood functions reported above,
one can compute th log posterior of the µ and then one can update the parameters using their MAP estimates.

β
(s)
k(l,hl) =

z
(s+1)
khl

+ δβ − 1

z
(s)
kl + 2(δβ − 1)

hl = 1, 2, · · · , c(l) ∀k

µ
(0)
k0 =

z
(0)
k(0) + νµ − 1
δµ + 1 ∀k

This helps us generate the µ(s)
kl for all s, k, l and most importantly µ(S)

kl . Given that we know µ
(S)
kl , we can

compute the variables of interest θ as

θ
(S)
kl =

µ
(S)
kl∑G

r=1 µ
(S)
kr

Updating topic proportions These are the θ update of the step. The θ(S) values updated this way can
then be used to update the ω parameters, which incidentally depend only on the leaf node parameters θ(S).
The approach to estimating ω is similar to the one used by Matt Taddy, using active set strategy.

4


	Introduction
	The Model

